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FOREWORD

This is a revised edition of the Leakage

Testin_ Handbook originally written by J.W.

Marr and issued as NASA Report No. CR-952 in

June 1967. Both the original and revised edi-

tions have been prepared at the General Elec-

tric Company Research and Development'Center

under National Aeronautics and Space Admini-

stration Contract No. NAS7-396, between the

Jet Propulsion Laboratory and the Missile and

Space Division of the General Electric Company.

The work of revising and updating the

Leaka@e Testin@ Handbook was performed by Dr.

Philip H. Peters, Project Manager, and Mr.

Everett E. Stone and Mr. A.J.Bialous, members

of the engineering staff of the General Elec-

tric Research and Development Center.

The NASA Project Manager is Mr. F.E.

Compitello, Code RPL, Liquid Propulsion Tech-

nology, Office of Advanced Research and Tech-

nology. The NASA Technical Manager is Mr.

R.S. Weiner, Liquid Propulsion Section, Jet

Propulsion Laboratory.
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Section 1

INTRODUCTION

I.I BACKGROUND

Systems which contain liquid or gaseous fluids vary widely

in size, complexity, function, and application. At some point

in manufacture, there is concern about the degree to which

a system is free of paths through which fluid leakage could oc-

cur. Methods and procedures must then be chosen or devised for

testing for leakage, taking into account the amount of leakage
that can be tolerated, the levels of working pressure which will

prevail on the faces of container boundaries, and the means by

which leaks may be located once they are sensed. Numerous meth-

ods are available for detecting, measuring, and locating fluid

leakage across a containing boundary. Often only a few of these

methods are applicable for testing an apparatus in a given situ-

ation after factors such as sensitivity of the test, time required

to perform the test, and the cost, weight, and size of testing

equipment are considered. It is desirable to specify in advance
the maximum allowable leakage rate and the methods and procedures

which should be followed in performing leakage testing.

Usually a manufacturer of equipment must develop standards

and procedures for measuring fluid leakage which are appropriate

to the particular type of equipment he manufactures and to the

application in which the equipment is used. He may decide to in-

clude a listing of his specifications with the operating instruc-

tions for testing the system or unit before it is placed in use.

Several military agencies and a few industrial groups have devel-

oped specific methods and procedures for performing leakage tests.

Societies such as the American Society for Testing and Materials

(ASTM), the Society for Nondestructive Testing (SNT), and the

American Vacuum Society (AVS) either have established or are in

the process of establishing standards for qualifying testing meth-

ods and procedures. More is said about this subject in Section 7,

"Some Guidelines for Writing Specifications°"

When a purchaser of an equipment places leakage test speci-

fications in his requisition he may not be fully acquainted with

the details of the method and procedures which he is in effect

asking the supplier of the equipment to follow. As a result his

specifications can easily be impracticable if not inordinately

expensive to guarantee. To offset a high testing cost the pur-

chaser can take advantage of statistical sampling techniques,

where applicable,to reduce the number of units which actually
need to be tested.

In any event, it is not uncommon to specify maximum allow-

able leakage rates which are unnecessarily low and require high

test sensitivities. Subsequently the manufacturer is asked to

i-i



prove that the specified sensitivity is in fact present in his

test instruments. Serious problems can arise in obtaining ac-

ceptance of equipment by the purchaser under these circumstances.

Programs may be slowed or brought to a halt until the specifica-

tions are met or until a new agreement is reached which reflects

a more thorough appraisal of the level of allowable leakage and

the sensitivity which is required to achieve an acceptable level

of test accuracy. More importantly, if test sensitivity is in-

adequately prescribed, leakage of such magnitude may be found in

a terminal test that the equipment must be scrapped or completely

rebuilt. Potential hazards to personnel may also arise.

1.2 SCOPE

This handbook has been written to unify and consolidate in-

formation and, hopefully, to prevent discrepancies in understand-

ing which can develop between the person preparing a specification

and the one responsible for complying with it. It is expected to

serve as a reference to persons who design equipment and write

specifications, as well as to those who perform the leakage tests.

The book covers fundamental concepts of leakage testing,

leakage phenomena often encountered during testing, and testing
methods.

This handbook is divided into three parts:

• Part I (Sections 1 through 7) describes the funda-

mental concepts and theories of leakage testing.

• Part II (Sections 8 through 23) describes methods

of leakage testing, their limitations, sensitivi-

ties, and use.

• Part III is a comprehensive review of leak detectors

which are commercially available in the world market.

Characteristics and sources of each equipment have

been compiled and are presented in tabular form on

individual data pages. Contributions from 128 ven-

dors are included. Twenty-nine different principles

of measurement are being used by these vendors.

Several cross-indexing tables have been developed

to serve as guides to information concerning speci-

fic types of leak detecting equipment and their manu-
facturers.

The reader desiring to become familiar with leakage testing

can study Part I of the book to gain an understanding of the gen-
eral subject, and can then select individual sections of Part II

for the various methods which are appropriate to his application.

He can refer to Part III to learn about equipment which is cur-

rently available for performing leakage tests.
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1.3 LEAKAGE TEST CATEGORIES

Leakage testing can be divided into three categories:

• Leakage measurement

• Leak location

• Leakage monitoring

Leakage measurement is the measurement of the total leakage

of a system or subsystem; it is the only method which reliably

determines that a leak exists.

Leakage location is the procedure of pinpointing the precise

locations of individual leaks.

It is extremely important that leakage measurement techniques

and leak location techniques not be interchanged indiscriminately.

In testing a system, the most reliable sequence is the measure-

ment of total leakage and then, if necessary, the location of

individual leaks.

Leakage monitoring is the continuous measurement of contam-

inants entering or leaving an enclosed system. The major dis-

tinction between leakage monitoring and the other two leakage

testing techniques is that monitoring is usually performed over

extremely long periods of time during system storage or opera-

tion. Leakage monitoring equipment differs from the equipment

used for leak detection in that it usually consumes less power

and is designed to operate stably over long periods of time.

Many of the instruments used for leakage measurement may be

adapted for continuous use.

1-3
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Section 2

REASONS FOR LEAKAGE TESTING

Rapid, nondestructive methods for the detection of gas and

liquid leakage in sealed systems are of great industrial and

military importance. The operational reliability of such systems

is greatly increased when considerable attention is paid to the

leakage testing of individual components as well as that of the

final assembly.

Leakage testing is performed for three basic reasons:

i. To prevent material loss by leakage.

, To prevent contamination, creation of hazardous

conditions, or disfigurement by leakage.

, To detect faulty components and control the re-

liability of the product (Ref. 2-1).

2.1 MATERIAL LOSS

The first consideration in specifying the leak-tightness of

a system is that the system must not leak sufficient material to

cause system failure during its useful life. The allowable leak-

age rate is simply the allowable total leakage divided by the use-

ful life of the system.

Material leakage can constitute a hazard to personnel during

system operation. Tolerable concentrations must be known or es-
tablished_ These are often reported in the literature (Ref. 2-2).

The maximum tolerable equipment leakage can be calculated from

given allowable concentration, taking into account effects of

dilution, ventilation, etc.

2.2 CONTAMINATION

Contamination of a system may be caused by material leaking

either into or out of the system. For example, damage may be

caused in the system of a liquid rocket motor when the oxidizer

leaks out of the storage tank and reacts with parts of the motor.

Electronic components may fail when air or water vapor enters a

sealed protective container. Often very small amounts of _nater-

ial can cause contamination failure; it thus becomes difficult

to predict accurately the conditions under which a failure may

occur. In any event, if some decision can be made as to the

amount of reaction product which may be allowed to develop be-

tween an oxidizer and part of a rocket engine, a total amount of

leakage and an allowable leakage per unit time can be designated.

Again, failure of a sealed semiconductor component usually

follows when a monolayer of water vapor, corresponding to i0 _5

molecules per square centimeter, has been absorbed on the surface
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of the semiconductor (p. 381, Ref. 2-3). An allowable leakage
rate for such a component can be calculated in terms of the maxi-
mum life time which is required of the component for a given
mission. If failure results from a pressure rise, then the max-
imum allowable pressure, the planned system operatlng time, and
the system volume are all that are necessary for calculating the
allowable leakage rate. Neilson (Ref. 2-4) has demonstrated
such a method for calculating the allowable leakage into small
sealed electronic components.

Appearance may often be a factor in setting a leakage speci-
fication, since leakage which spoils appearance eventually may
lead to a failure of the equipment or otherwlse render the equip-
ment less acceptable for use. Rusting or corrosion of the exter-
nal surfaces of valves, fittings, piping, panel-mounted switches,
and nameplates are examples where loss of appearance affects
utility and safety.

2.3 LEAKAGE AND RELIABILITY

Leakage testing may be employed to assess the reliability

of a system by pinpointing sources of fluid leakage in the sys-

tem and its components which may later affect the operation of

the system deleteriously.

High values of leakage where none is expected can serve to

identify errors of installation, such as the improper alignment

or absence of a gasket. Such errors generally result in leakage

rates of 10 -2 to 10 -5 atmosphere-cubic centlmeters per second.

Of course, the absence of high leakage does not necessarily in-

dicate that a connection has been properly made. Leak-tightness

can be obtained with misaligned parts as well; however, if parts

are misaligned, leakage is likely to occur.

Many leaks are caused by material flaws such as cracks and

fissures. Some of these flaws can be detected by leakage mea-

surement. Even more can be detected by x-rays. But neither tech-

nique will detect all flaws. Leak detection is therefore comple-

mentary to other detection techniques in finding basic material
flaws.

Occasionally it is desirable to locate very small leaks, be-

low 10 -_ atm-cc/sec. Such leaks, if they remain small, would not

be objectionable in an equipment. However, operating stresses

can cause the size of a leak path to increase with time, a_d leaks

which are negligibly small at room temperature will enlarge ±_ the

component in which the leak path exists must eventually operate at

a high temperature. Temperature cycling can cause permanent en-

largement of a leak path which is initially very small.

The reliability of a system may be thought of in terms of

the maximum rate of leakage which can be tolerated from or into

that system. Test procedures are designed to determine that the

leakage rate is in fact no greater than this maximum value. A
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system or component is deemed unreliable if testing shows that
the leakage exceeds this level. The sensitivity of the test
needs to be only high enough to measure leakage rates between
one-fourth and one-half of the leakage reliability level.

2.4 SENSITIVITY

In specifying a leakage test, a procedure with an optimum

sensitivity value in the correct leakage range should be chosen.

Large deviations from this optimum value increase the time and

the difficulty of performing the measurement. Any increase in

the sensitivity specified for a particular test automatically

increases the cost of testing. Therefore, a compromise has to

be reached between testing cost and leakage tolerance.

For example, if a leakage rate of 10 -4 atm-cc/sec is allow-

able in an equipment, it is unnecessary to perform a test sensi-

tive to much less than that value, even though the actual leak-

age rate of the equipment is in fact well below 10 -4 atm-cc/sec.

The chief concern here is not with the actual leakage rate, but

rather with meeting the requirements of the application. From

this viewpoint testing costs may be minimized; design of the

equipment also can be influenced resulting in the use of lighter

weight materials, and in a reduction in weight, size, and cost
of manufacture as well.

2.4.1 Optimum Sensitivity Value and Testing Difficulty

The procedure employed with a given method of testing for

leakage has an optimum value of sensitivity at which it is most

easily used. Deviation from this optimum value makes it more

difficult to perform the measurement and decreases confidence in

the results. Figure 2-1 is a diagram showing the influence of
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Figure 2-1.

PROCEDURESENSITIVITY

Ease of Operation Versus Procedure Sensitivity
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increasing sensitivity on the ease of operation of the equip-

ment. In most cases, after reaching a plateau, further increase

of sensitivity rapidly decreases the ease of operation.

Bubble testing by immersion in water provides an example of

how the optimum value of sensitivity affects the ease of perform-

ing the test. This testing method has a sensitivity range be-
tween i0 -l and 10 -4 atm-cc/sec. In measuring for i0-" atm-cc/sec

leaks, a component may be placed in water and quickly removed.

With immersion, bubbles will evolve from the pressurized compo-

nent at such a rapid rate that there is no question of the exis-

tence of a leak. In checking for leaks in the range of 10 .2 to

10 -3 atm-cc/sec, care must be taken that the immersed component

is submerged long enough for any bubbles coming from around crev-

ices to collect and rise.

In the measurement of leaks near l0 -_ atm-cc/sec, the compo-

nent, after being immersed, has to be completely stripped of at-

tached air bubbles so that the formation of bubbles of leaking

gas may be detected. The i0 -_ atm-cc/sec range is near the limit

of detectability of this method, although higher sensitivity

should result if longer waiting periods are used. If the rate

of bubble evolution approaches the rate at which the gas dissolves

in the testing fluid, no gas will be seen and the sensitivity will

decrease rapidly as will the ease of operation. A somewhat higher

sensitivity may be obtained by saturating the liquid with the gas.

Evidently bubble testing becomes exceedingly difficult to

employ if a leakage rate much less than 10 ..4 atm-cc/sec is speci-

fied. It would be better to change to a test procedure which is

more effective at that higher sensitivity. In the same manner,

trying to check leaks larger than i0 -l atm-cc/sec becomes diffi-

cult because of rapid gas evolution and rapid decay of pressure

in the system. However, the difficulties in the lower range of

sensitivity are usually not so great as in the maximum sensitivity

range of the method.

2.4.2 Cost Considerations

The cost of leakage testing increases as the required sensi-

tivity increases. Figure 2-2 illustrates this increase in cost.

The investment for a leakage determination of 10 -3 atm-cc/sec is

negligible, perhaps a few dollars for the apparatus involved in

a bubble test. The investment for testing at 10 -12 atm-cc/sec

may well be in the order of $50,000. An increase in the sensi-

tivity of a test with a given instrument will result in an in-

crease in measurement cost. Such an increase is usually caused

by the additional test complexity. This cost increases more

rapidly when the level of sensitivity is located at the right

of the sensitivity plateau of Figure 2-1.

2.4.3 Zero Leakage

Nothing made by man can be considered to be absolutely leak-

tight. Even in the absence of minute porosity, the permeation of
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certain gases through metals, crystals, polymers, and glasses

still occurs. Leak-tightness is, therefore, a relative term.

In setting the upper limit on allowable leakage, it is necessary

to establish a practical leakage level for any given component

under test below which the component may be considered to ex-

hibit leak-tightness. The importance of leakage in the specific

type of equipment or component may often be used as a practical

guide. Increasing the sensitivity of a testing method brings

with it an increase in the time required and the cost of perform-

ing a test. Cost reaches a maximum level when the specifications

read in one of the following ways:

• No detectable leakage

No measurable leakage

• No leakage

• Zero leakage

Such specifications are ambiguous and impose an unattainable

standard on any type of equipment. Their use is to be avoided.

With specifications such as the above the operator will be

continually forced to operate his equipment at maximum sensitiv-

ity and will always have to decide whether the signal output is

due to system noise and drift or to actual leakage into the de-

tector. In essence, if there is to be no leakage, there can be

no signal to detect.

It is much easier to discriminate a leakage signal against

a reference signal generated through a leak whose leakage rate

is known than it is to discriminate against system noise.

It is therefore suggested that the term "zero leakage" be

used only if it is defined as the measurable value of leakage

below which the satisfactory operation of the system to be

tested is in no way impaired. The Jet Propulsion Laboratory,

for example, has used this concept in defining a level for zero

liquid leakage into or out of a system in terms of a measurable

level of tracer gas leakage (Ref. 2-6).
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Section 3

CHOICE OF PROCEDURE FOR LEAKAGE TESTING

3.1 INTRODUCTION

The method to be used in conducting a leakage test must be
chosen with considerable care. A correct choice of method will

optimize sensitivity, cost, and reliability of the test.

One way to approach the problem of selecting a preferred
method is to rank the various methods which are available for

the test according to test sensitivity. Then, one has only to

decide what degree is required and choose the method from those

offering adequate sensitivity.

It is important to distinguish between the sensitivity

associated with the instrument which is to be employed in mea-

suring leakage and the sensitivity of the test procedure which

is to be followed in using the instrument. The sensitivity of

an instrument influences the sensitivity which can be attained

in a specific test. The range of temperatures or pressures and

the types of fluids involved influence both the choice of instru-

ment and the choice of test procedure.

Each test procedure may have a different sensitivity. For

example, a test utilizing a mass spectrometer leak detector will

usually have a sensitivity of 10 -I° atm-cc/sec when the procedure

involves the measurement of a steady-state gas leakage rate.

Under special conditions the sensitivity of the test may be in-

creased to I0 -i_ atm-cc/sec by allowing an integration of the

leakage to occur in a known volume before a measurement of the

leakage is made. Thus, in the first case the sensitivity of the

test equals the sensitivity of the instrument, whereas in the

second case the sensitivity of the test is ten times greater

than that of the instrument. On the other hand, if the test pro-

cedure utilizes a mass spectrometer operating in the detector-

probe mode, the sensitivity of the test can be 102 to 104 smaller

than that of the spectrometer alone.

Comparison of the sensitivities of any two instruments must

be made with one particular type of test situation in mind. If

the helium mass spectrometer leak detector is compared with the

heated-anode halogen leak detector in detecting the presence of

a leak into an evacuated vessel, it will be found that the mass

spectrometer is at least 1000 times more sensitive. On the other

hand, if these two instruments are both used for locating a leak

from a pressurized environment into atmospheric air, the sensi-

tivity of the heated-anode halogen detector is greater by at
least a factor of ten. Thus, the manner in which an instrument

is employed in a test affects its basic sensitivity and, thereby,

the overall sensitivity of the test.
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In view of these facts, the choice of the test method and
procedure should be made by following a step-by-step process
such as that outlined in the chart of Figure 3-1. Note that the
numbers assigned to the headings of this section are repeated on
the chart for reference purposes.

The chart is entered on the left at "Leakage" with the ques-
tion: Should this test reveal the presence of a suspected leak
(leakage measurement) or show the location of a known leak (leak
location)? One then proceeds along the chart according to the
features of the particular type of system to be tested in order
to select an optimum testing method.

A number of the most commonly used leakage test methods
are listed on the chart, showing the range of leakage sensi-
tivity over which each method is applicable.

Any practical leakage testing program will utilize several
different leakage test methods, progressing from those with lit-
tle sensitivity to those of higher sensitivity as the leak-tight-
ness of the object or system is proved. A systematic program
must be employed for leakage testing in large complex systems
(Ref. 3-2). In general, it is necessary to correct the large
leaks before the small leaks can be evaluated. There are special
cases, usually mass production items, where it is advantageous
to make fine leakage tests prior to the gross leakage tests
(Refs. 3-3, 3-4, and 3-5).

3.2 LEAKAGE MEASUREMENT

The leakage measurement procedure involves covering the

whole of the suspected region with tracer gas, and establishing

a pressure differential across the system by either pressuriz-

ing the tracer gas or evacuating the opposite side. The pre-

sence and concentration of tracer gas on the lower-pressure side

of the system are then determined and measured.

The objects of leakage measurement fall into two categories:
i) open units which are accessible on both sides, and 2) units

which are sealed. The second category usually consists of mass-

produced items which are to be tested in large quantities. These

include transistors, relays, ordnance units, and instruments.

3.2.1 Units Accessible on Both Sides

Either evacuation or pressurization of one side of a unit

which is accessible on both sides may be employed to test for

leakage across the unit. If one side is evacuated the tracer

gas leakage into the vacuum will reach the detector quickly,

since there is essentially no possibility of stratification.

However, evacuation does not always allow the most sensitive

and reliable measurement. If the evacuation system is extremely

large, high pumping speeds will be involved and can often re-

sult in a substantial reduction of the amount of tracer gas which
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reaches the detector. Aside from sensitivity, evacuation of one

side to low pressure may not be possible if the equipment is not

strong enough to withstand the pressure differential.

3.2.1.1 Units Which Ma_ Be Evacuated. The first approach to

testing units which may be evacuated is to determine whether

there is an inherent tracer in the system. Perhaps during nor-

mal operation the system contains one of the tracer gases (e.g.,

helium or halogenated hydrocarbon). If so, the use of a testing

method specifically for that gas might be preferred, since con-

siderable savings can be realized if the system need not be filled

with a tracer gas.

If no inherent tracer is available, the next approach should

be to consider whether there is a gage already present in the sys-

tem which might be used for leakage measurement. This gage might

be simply an ionization gage or, in some fortunate circumstances,

a mass spectrometer which is in the system as part of the analyt-

ical instrumentation. Not only gages which are normally used for

leak detection should be considered: any equipment for detecting

gas concentration which happens to be available may be used for

leakage measurement. Even equipment not originally intended for

pressure measurement may be used. For example, it is possible

to detect the pressure rise in a leaking vacuum tube by operat-

ing the grid at a positive and the anode at a negative potential,

and noting an increase in anode current with time.

If there is not an inherent tracer or gage within the sys-

tem, then some testing method must be chosen which has the desired

sensitivity. In the order of increasing sensitivity for testing

an evacuated system, these include: flow measurement, pressure

measurement, heated-anode halogen detector, and helium mass spec-
trometer leak detector.

In most cases, all the possible methods should be considered.

A more sensitive procedure may represent a higher initial invest-

ment, but will usually provide test results of greater relia-

bility.

Once the method has been chosen, it is necessary to decide

on the testing procedure to be followed. Since it is usually

preferable to perform the tests in the shortest possible time,

a dynamic (steady-state) testing procedure should be tried ini-

tially. A static (accumulative) testing procedure of leakage

testing yields a higher sensitivity but requires a much longer

testing time. In some cases it will be necessary to resort to

static testing if the dynamic test fails to reveal any leakage

and the desired test sensitivity is above that provided by the

dynamic test. For example, leaks in ceramic-to-metal seals

may be so small that accumulative testing is required to de-
tect them.

3.2.1.2 Systems Leaking to Atmospheric Pressure. The choice of

testing method for systems leaking to atmospheric pressure should
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be made in the same pattern as suggested for evacuated systems.
The first point to be considered is the possibility that there
is an inherent tracer in the system. It should then be determined
whether a gage exists in the system which may be used to measure
pressure or tracer gas concentration. Again, this might not
necessarily be the original purpose of the particular gage, but
it may be adapted to this use for the leakage measurement.

If a tracer or a pressure monitoring device is not inherent
in the unit being tested, then one of the standard methods of
making leakage measurements must be employed. These are, in the
order of increasing sensitivity: flow measurement, pressure mea-
surement, bubble testing (immersion), and the use of a helium
mass spectrometer, infrared analyzer, heated-anode halogen de-
tector, or radioactive tracer. (Note that the helium mass spec-
trometer method is not the most sensitive when the measurement
is to be made at atmospheric pressure.)

Whenever applicable, dynamic testing should be used. Static
testing techniques will increase testing time, but they will also
increase test sensitivity.

3.2.2 Simultaneous Testing of Sealed Units

Sealed units which are made in large quantities present

several specific problems in testing. It is imperative that a

large number of units be tested rapidly. It is also imperative

that no defective units be allowed to pass.

Most of the testing procedures for sealed units involve par-

tial evacuation. If the leak in the unit is exceptionally large,

the tracer gas will escape rapidly from the unit during this par-

tial evacuation. Consequently, high-sensitivity tests will be

ineffective since they cannot be usefully employed if the tracer

gas has already escaped from the system. It is therefore recom-

mended that all parts be tested for large leaks after the high

sensitivity tests that are described below have been conducted.

This is because the standard way of performing large-leak test-

ing is by the bubble-testing procedure; and since liquids are

involved, smaller leaks can easily become clogged and may not

be detected during a subsequent high-sensitivity test.

In the testing of sealedunits, applicable testing methods

are, in the order of increasing sensitivity: bubble testing,

flow measurement, pressure measurement, infrared analyzer, heated-

anode halogen detector, helium mass spectrometer, and radioactive

tracer. The last four methods are applicable to a back-pressur-

izing testing procedure.

3.2.2.1 Testing Evacuated Units. With evacuated units the

choice of testing procedure is relatively simple. If the system

contains a gage which may be used to show the presence of gas

contamination, it is the first testing method to be tried. If

such a gage does not exist, a flow measurement procedure may be
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considered. Finally, if this is not sensitive enough, the back-

pressurizing procedure must be used. The only other considera-

tion in the choice of a procedure is that, after testing, the

units should be passed through a bubble test to locate the excep-

tionally large leaks.

3.2.2.2 Te8ting Units Sealed with Tracer Gas. Units sealed with

tracer gas may be tested for leakage of the gas out of the unit

by dynamic or static precedures. Generally, the partial pres-

sure of tracer gas inside a unit will be higher than it would be

if the tracer gas were forced into an evacuated unit through a

small leak, as is done in the back-pressurizing procedure. Thus

presealing with tracer gas leads to a more sensitive, lower-cost

leak test procedure involving fewer steps. As in the case with

the other methods a final inspection must be conducted by means

of a bubble test procedure to locate exceptionally large leaks.

3.3 LEAKAGE LOCATION

Leakage location can be subdivided into a tracer probe pro-

cedure and a detector probe procedure.

The tracer probe procedure is generally used when the sys-

tem is evacuated and the tracer gas comes from the outside. The

detector probe procedure is used when the system is pressurized

with tracer gas and testing is done at atmospheric pressure.

Usually tke tracer probe technique is more rapid because the

gas reaches the detector at a higher concentration than with a

detector probe. In the detector probe procedure a pressure dif-

ferential higher than one atmosphere across the system may be
used, and therefore leaks of a smaller conductance can be found.

In using either procedure it is important that leak location be

attempted only after the presence of a leak has been ascertained.

3.3.1 Detector Probe Procedure

In testing a system which is leaking into atmosphere the

first consideration is whether or not the leaking fluid may be

used as a tracer. This will always be the procedure when using

either the sonic method or the bubble-testing method. However,

the tracer might be of a composition which will also prove satis-

factory for use with the other testing methods. In order of in-

creasing sensitivity these methods of leak location are: chemical

testing, gage response, infrared gas analyzer, mass spectrometer,

and heated-anode halogen detector.

3.3.2 Tracer Probe Procedure

In the location of leaks in evacuated systems the first item
to consider is whether or not there is an inherent detector with-

in the system. This may be a pressure gage of some type or, more

desirably, a gage which is specific for a tracer gas which may be

used. If such a gage does not exist, the methods to use in the

order of increasing sensitivity are: sonic, pressure change gage
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response, high voltage discharge, heated-anode halogen detector,
infrared detector, and mass spectrometer.

These methods must be individually examined to see if their
limitations and advantages are suitable to the particular system
being tested. Radioactive gases are not generally employed as
a tracer for routine leak location because of the hazards asso-
ciated with their use.
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NOMENCLATURE FOR SECTION 4

a

C

CA

e

g

h

K

P

PE

Po

PI

P2

Po

Q

QE

Qi

r

S

S E

S d

t

t E

Current

Conductance

Conductance of tracer gas

Base of natural logarithms

Standard gravity

Height

Multiplication factor

Pressure

Pressure of tracer gas

Atmospheric pressure

Upstream pressure

Downstream pressure

Initial partial pressure of tracer gas

Leakage rate, pressure-volume per unit time

Leakage rate, tracer gas

Indicated leakage rate

Bubble radius

Capillary radius

Pumping speed, volume per unit time

Pumping speed, tracer gas

Pumping speed of detection instrument

Time

Time of exposure to tracer gas



t R

V
O

V

P

T

Residence time after pressurizing

Volume

Leakage rate, volume per unit time

Ratio of length of circumference of a circle to its
diameter

Density

Surface tension

Time constant, volume per unit time



Section 4

TESTING FUNDAMENTALS

The fundamental concepts involved in leakage testing with

a tracer gas are presented in this section. These concepts

govern the preparation for a particular leakage test and guide

in the selection of the necessary testing equipment. For example,

the effects on detector sensitivity and response time of the in-

ternal volume of a container relative to the internal volume of

a leak detector used to measure leakage from that container can

be evaluated from the principles set forth in this section.

4.1 DIMENSIONS OF LEAKAGE UNITS

The dimensions of the rate of gas leakage are

Pressure x Volume

Time

O

sometimes written as PV. The leakage rate is proportional to

the mass flow of a given gas at constant temperature. If the

nature of the leaking gas and the temperature are known, it is

possible to use the formula for an ideal gas to determine the

actual mass leakage.

A wide variety of units for leakage are in common use. The

units always represent pressure multiplied by volume per unit
time.

For example, an operator may have a gas tank whose volume

is known in cubic feet. The tank is fitted with a pressure

gage calibrated in pounds per square inch. If the gage is read

daily, it is convenient for him to express the leakage as the

product of the change in pressure which occurs during one day

and the cylinder volume. He will then express the leakage as

psi-cubic feet per day.

Suppose leakage occurs from the atmosphere into an evacu-

ated chamber and increases the pressure in the chamber. The

increase in pressure is determined by the number of molecules

entering the chamber. The number of molecules entering the

chamber depends not only on the volume flow rate of the gas but

also on its pressure. The product of the volume flow rate and

the external pressure is equal to the change in pressure Inside

the system times the system volume. Thus, it is not fully de-

scriptive of the leakage rate to state that so many cubic centi-

meters per second of a gas are entering the chamber. Unless

the entrance pressure is given, it will be assumed to be equal

to one atmosphere. On the other hand, the volume of a given

mass of liquid is invariant over a very wide range of pressure;

hence, liquid leakage may be expressed in terms of volume flow.

Considerable confusion can arise in performing calculations if

the dimensions of gas and liquid leakage are not clearly set forth.
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All equations used in this book express gas leakage rates
in volume multiplied by pressure per unit time, and liquid leak-
age rates in volume per unit time.

4.2 CONVENTIONAL LEAKAGE UNITS

Lists of conventional sets of units used to express leakage

rate and factors for converting from one set to another are given

in Tables 4-1A and 4-1B. In leakage work, mass flow is usually

expressed in atmosphere-cubic centimeters per second (atm-cc/sec)

at 25 degrees C.

Sets of units for leakage rate are commonly employed as
follows:

• Military standards are written in atmosphere-cubic

centimeters per second.

. The Atomic Energy Commission specifies leakage rate

in standard cubic centimeters per second, defining a

standard cc as the volume of a gas at zero degrees

centigrade and one atmosphere of pressure•

• The George C. Marshall Space Flight Center of the Na-

tional Aeronautics and Space Administration defines

leakage rate in units known as SCIMs. A SCIM is a

standard cubic inch per minute at one atmosphere pres-
sure.

• The English term lusec is another unit for leakage

rate. A lusec is a micron-liter per second, a micron

being defined as i/i000 torr.

• The tort-liter per second is in common use in America

in preference to the less popular micron-liter per
second°

• Refrigeration servicemen define their leakage speci-

fications in ounces per year of refrigerant• This

standard is rational, since refrigeration systems are

charged with several ounces of refrigerant and the sys-

tems must operate for years. A leakage of an ounce

per year of refrigerant is equlvalent to a helium

leakage of 1.8 × i0 -_ atm-cc/sec.

Attempts have been made to initiate a clear, concise and

exact form of describing leaks for use in specifications and other

documents (Ref. 4-1). Roberts (Ref. 4-2) suggested a nomenclature

which eliminates the exponent and units• For example, the desig-

nation 2-8G 50-15/2 would signify the following:

2-8 Maximum leak size permitted is 2 x 10 -8 atm-cc/sec

G Gas leakage (for liquid leakage: L followed by

viscosity in centistokes. Example: L (80), 80

being viscosity of light oil at 20°C)
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Table 4-1A

LEAKAGECONVERSIONFACTORS

Tort i/sec

Micron [/sec

(lusec)

I
Arm cc/sec Psi co/see Tort cu in./sec Micron cu £n./sec Arm cu in./sec

I
[ Psi cu ;n./sec

l 1 * [0 i 1.316 1.934 * 10 I 6.i03 x 10* 6.103 _ l0 _ 8.030 x 10 -_ i 1.180

1 * 10 -a i 1.316 × I0 -a 1.934 x i0 _ 6.103 _ i0 z 6.103 x l01 3.030 x 10 .5 1.180 x i0 -_

7.60 _ I0 -_ 7,600 x L0 a 1 1.470 _ i0 z 4.638 _ i0' 4.638 * I0 _ 6.103 * i0 "z 8.969 x i0 s

5.171 * 10 _ 5.171 _ l01 6.805 × i0 : 1 3.156 3.156 x 10) 4.153 • i0 "_ 6.103 _ 10 -z

1.638 _ 10 _ 1,638 _ i01 2.156 x i0 2 3.168 _ i0 z 1 1 * i0 _ 1.316 _ lO 3 1.934 x i0 -2

1.638 _ i0 "_ 1,638 w i0 z 2.156 x i0 "s 3.168 x I0 _ i w 10 _ i 1.316 " l0 ¢ 1.934 _ i0 s

1.245 x i0 z 1.245 _ I0 _ 1.638 _ I0 I 2.408 _ i0 _ 7.60 • 10 z 7.60 x I0 s I 1.470 _ i0 z

8.474 * I0"* 8,474 _ I0 a 1.115 1.638 _ i0 z 5.171 . 10 s 5.171 x I0 * 6.805 x 10 -z 1

To change the time base from seconds:

To Multiply Value by

Minutes 60

Hours 3600

Days 8.640 x I0 _

Weeks 6.048 • 10 s

Months 2.417 x l0 6

Years 3.154 x i0 ?

Table 4-1B

LEAKAGE CONVERSION FACTORS (WEIGHT)

Tort liters

Molecules

Gram-moles

Kilogr am-moles

Ounce-moles

Pound-moles

0.76

2.7_i0 L_

4.5_I0 _s

4.5xi0 -m

1.6 x I0 "_

1.0.i0 "7

1.3

3.5xi0 l_

5.9,i0 -I

5.9xi0 "i

2.1xlO "_

1.3xl0 "?

3.7 _ i0 "z°

2.8 _ I0 "z"

1.7 < i0 "2_

1.7 x i0 "n

5.9x10 -2m

3.7xI0 a7

2.2.10 _

1.7x10"

6.0.i0 _s

I0 _

3.5x10 _

2.2x10 *

2.2_10'

1.7 . 10'

6.0x10 z*

i0 )

35

2.2

6.4x10 s

4.8 x 10 s

1.7 i0 zs

28

2.8_i0 -_

6.3xi0 2

l. OxlO _

7.7 _ lO t

2.7_i0 z_

4.5 . iO a

0.45

The weight leakages are stated in welght-mole units; i.e., the num_oer of moles of the

material expressed in the stated weight unite. To obtain the weight of material, mul-

tiply the weight-mole by the molecular weight of the material.

The conversions between volume and weight or molecular numbers are made for a gas

temperature of 0ec. TO convert volume to • weight at any other temperature, multiply

result of calculation at 0eC by 273/(273 + T}, where T is the temperature in de_rees

centigrade.

Example:

Convert 5 × 10 "_ a_m-oc of air at 100"C to grams:

(5 x 10 "_) x (4.5 x i0 "_ ) x 29 x {273/373) = 4.78 x 10-TGrams

(Gram-molesl x (Molecular Weight) x (Temperature Correction) m {Grams)(Arm-co) _ (Atm-cc)
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50-15 High-side pressure, psza; and low-side pres-
sure, psia

/2 Maximum accuracy factor of detection method.

Here it is required that the demonstrable

accuracy of the leak detector -- leak tracer --

leak standard system fall within the range of

1 _ i0 -_ to 4 _ i0 -_ atm-cc/sec.

4.3 LEAK CONDUCTANCE

In vacuum technology, a leak is a hole or porosity in the

wall of an enclosure capable of passzng gas from one side of

the wall of the enclosure to the other when a pressure or con-

centration differential is established across the wall (Ref. 4-3).

Unless a leak is intentionally manufactured in an item, the

dimensions of the leak will generally be unknown and indeter-

minate. As a result, it is not possible to calculate in advance

the flow of a fluld through the leak under a given pressure dif-

ferential. It becomes necessary, rather, to characterize the

leak in terms of an extrinsic property known as conductance.

The conductance of a leak zs determined by applying a mea-

sured differential pressure across the wall in which the leak

is located, and measuring the rate at which fluid passes through

the leak. The conductance is given by the following ratio be-

tween the two measured quantities:

C = Q (4-1)
PI - P2

Thus conductance is the (volume flow rate) tlmes (pressure) per

(pressure difference). In a conventional set of units, conduc-

tance is measured in atm-cc/sec/atm. Conductance is also the

ratio of the volume of a gas that enters a leak at one atmosphere

of pressure and exits from that leak to vacuum per unit of time.

In this case the dimensions of conductance are volume per unit

time, or cubic centimeters per second in the units above.

The conductance is dependent upon the mode in which the

fluid flows through the leak, and may often be found to be dif-

ferent at different levels of absolute pressure, especially when

the average value of the inlet and outlet pressures in one situ-

ation is greatly dlfferent from that in another sltuation A

large change in conductance can be observed when the average pres-

sure is close to a transztion region between two modes of flow.

The transition from laminar to molecular flow with decreasing

average pressure is a common instance of a mode change.

It is zmportant to specify the average pressure at which the

conductance is measured. In fact zt is helpful to measure the

flow rate versus dlfferential pressure over the same range of ab-

solute values of pressure which is expected to prevail in the

equipment in which the leak is located. An average value of
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conductance can then be determined from data obtained in this
way and any large changes in conductance observed. Changes in
conductance due to a change in the area of the cross section of
the leak with pressure will be taken into account. An abrupt
increase in the cross section at high pressure would abruptly
increase the conductance, and would reveal the presence of an
incipient leak path which might not be noticed in a test at a
lower pressure.

4.4 SENSITIVITY AND TESTING

The sensitivlty of a detector is determined by the minimum

concentration of tracer gas which will produce a measurable sig-

nal at the detector. An increase in the pressure of tracer gas

applied in the region of a leak will increase the flow of tracer

gas through the leak and Into the detector. The minimum level

of leak conductance which can be detected with a detector of

fixed sensitivity will decrease as the pressure of tracer gas

at the entrance to the leak is increased. Thus, holes of smaller

size can be found if a higher entrance pressure is employed.

For example, a small increase in pressure on the detector side

of the leak will not affect the sensitivity of a detector of the

mass spectrometer type. Factors affecting detector sensitivity

are presented in more detail in sections dealing with specific

instruments, their operation, and use.

The above brief discussion shows how the sensitivity of a

test can be increased by changing a parameter external to the

detector. In dynamic (steady-state) testing a pressure increase

is effective in increasing test sensitivity. In static (accumu-

lation) testing an increase in testing time accomplishes a similar

increase in test sensitivity. In both cases the detector or in-

strument sensitivity would remain the same.

4,5 LEAKAGE MEASUREMENT TESTING

The leakage measurement technique involves a sampling of the

total leakage from a closed system or from a region of a closed

system which requires leakage testing. Use of the technique re-

sults in an indication of a leak if it is present, but not in the

identification of particular locations where leakage occurs on

the object being tested.

Tests using the leakage measurement technique can be con-

ducted in two ways, as shown in Figure 4-1. By one method, the

object to be tested is pressurized with tracer gas and placed

inside a closed container, to which a leak detector is attached.

The external container may be filled with normal air or any gas

other than the tracer gas to which the detector is sensitive.

The detector must be of a type operable at or near atmospheric

pressure in this case. Alternatively, the container may be evac-

uated and a vacuum type of instrument employed. Evacuation of

the container increases the differential pressure across any leak-

age path in the wall of the test object by one atmosphere for the

same pressure of tracer gas that was used in the first instance
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above. The sensitivity of the vacuum type of detector may be

higher than that of the detector operating at atmospheric pres-

sure, with the same differential pressure across the leak.

A second approach is to pressurize the container and evac-

uate the test object. In this situation a vacuum detector is

located in the vacuum line to detect inward leakage from the

pressurized container. The tracer gas flows to the detector,

where its concentration is measured when equilibrium is estab-

lished. The equation for the response of the detector is:

Q = PS (4-2)

Here it is assumed that the only gas in the detecting system is

tracer gas.

The test sensitivity should be the same for either direction

of flow through the leak paths, providing the same levels of ab-

solute pressure and differential pressure of tracer gas are em-

ployed. The choice between the above two approaches might be

based on the ability of the test object or the container to with-

stand pressure in one direction in preference to the other, or

on the ease with which tracer gas may be applied to one side of

the test object.

Some of the factors which affect the sensitivity and re-

sponses of the detector when the leakage measurement technique

is employed are:

l. Physical properties of the particular tracer gas

which is used. These govern the rate at which gas

will traverse a leak path.

• Speed at which tracer gas is removed by the vacuum

pump in comparison with the volume of the test ob-

ject.

. Sensitivity of the detector for the particular

tracer gas used.

• Position of the tracer sensing element in the pump-

ing system.

It is also possible to test and measure gas leakage from a

pressurized test object by building a frame to support a plastic

bag or tent which surrounds the test object. The bag is filled

initially with atmospheric air (Refs. 4-4 and 4-5). The rate of

change of tracer gas concentration is determined on a compara-

tive basis against a known rate of tracer leakage into the bag.

The method is especially useful in testing very large objects,

perhaps ten to twenty feet high and several feet in diameter.

References 4-4 and 4-5 discuss the accuracy of this method of

measuring leakage. Measured values are within about 10 percent

of the expected values on the basis of tests with calibrated

leaks. The method does not appear to be useful for measuring
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leakage rates less than I0 -s atm-cc/sec, but may be entirely
adequate in some testing situations. Certainly this level of
test sensitivity is comparable with that attainable with bubble
testing. The method has none of the disadvantages of bubble
testing in that the test object is not wetted or contaminated
and a large tank filled with heavy liquid is not required.

4.5.1 Magnitude of Response

The magnitude of the response in the dynamic (steady-state)

method is dependent on the sensitivity of the detector to the

tracer gas used and the speed at which the gas is removed by the

pump. In most cases, where the tracer-gas partial pressure is

converted by the instrument to a current which is proportional

to pressure, Equation 4-2 can be expressed in the following form:

Q = Sd(Ka) (4-3)

In this form, the product Ka has dimensions of pressure. Instru-

ment sensitivity can be affected by changing either K or a. The

multiplication factor K can be increased to a limit generally

imposed by electronic instrument noise; a can be increased by

increasing the tracer-gas partial pressure within the system

through a decreased pumping speed. Thus the sensitivity of the

method increases with a decrease in pumping speed. Unfortunately,

this increase in sensitivity brings with it a decrease in the

speed of response.

There are times, however, when it becomes necessary to em-

ploy additional pumps in the evacuation system being used for

testing. This is particularly the case when the detector must

operate at a low pressure. The additional pumps are necessary

to remove gas arising from both leakage and outgassing at a rate

sufficient to keep the pressure at the detector at a suitably low

level. The manner of connecting an additional pump to the detec-

tor system is shown in Figure 4-2. This pump increases the total

i
_'::'.'ENv EL'OPIE}'.";':_;................!::

0

IoF--1ol
LEAK

DETECTOR

Figure 4-2.

L I I

Leakage Measurement Involving the Use

of an Auxiliary Pump
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pumping speed of the system and reduces the partial pressure of
the tracer gas at the detector. The sensitivity of the measure-
ment is thereby reduced.

4.5.2 System Response Time

Although the pumping speed of a dynamic leak detecting sys-

tem determines the magnltude of the response at equilibrium (Equa-

tion 4-2), several other factors influence the system response

time. System volume is the most important of these factors.

The complete subject is discussed in detail in several papers

(Refs. 4-6, 4-7, 4-8, and 4-9). The discussion here shows the

fundamental points involved.

The response time of a leak detection system may be deter-

mined by considering a system with leakage rate of tracer gas

QE, an evacuated volume, V, and an internal partial pressure of

tracer gas PE. This system is evacuated by external pumps, and

a portion of the tracer gas passes through the leak detector

(see Figure 4-2). The pumping speed at the outlet of the vol-

ume to be tested is called SE. A mass balance on the system

at constant temperature requires that the rate of tracer gas ac-

cumulation within the system be equal to the rate of tracer gas

leaking into the system, less the rate at which tracer gas is

pumped out of the system, or:

dP2
V _ = QE - PESE (4-4)

When this equation is integrated with the initial condition that

at t = 0 the tracer gas partial pressure is P0, there results:

QE - PESE SEt
Zn = (4-5)

QE - PoSE V

or,

QE - PESE = e-SEt/V

QE - PoSE

(4-6)

If the pumping speed S is the same for all gases, then S = S E,

and the subscript may be omitted.

Two special cases of Equation 4-6 are of interest. First

is the case in which the system has been pumped for a long time

and the partial pressure of the tracer gas in the system is ini-

tially zero (P0 = 0). Equation 4-6 then becomes:

QE -St/V) (4-7)
PE = S-- (1 - e

After a long exposure time the exponential term approaches

zero, and

PE = QE/s (4-8)
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For example, a leak detector may be pumping on a 10-1iter system

with a one-liter-per-second pump. The response of such a system

is plotted as Curve 1 in Figure 4-3. In ten seconds, the detector

responds with 63 percent of the ultimate signal. The equilibrium

signal is attained in approximately one minute.

If the system to be pumped is i00 liters, the response time

is considerably longer. As seen on Curve 2 of Figure 4-3, in i0

seconds only about 10 percent of the total response is observed.

The equilibrium value is not reached for i0 minutes.

Such a response time might not be acceptable for leakage

measurement, and is of dubious value for leak location. It is

possible to decrease the response time by increasing the pump-

ing speed of the system. In Curve 3 of Figure 4-3, the pumping

speed for the 100-1iter volume has been increased from one liter

per second to five liters per second. This, however, decreases

the magnitude of the signal. It may be observed that in this

particular case the response rates for Curves 2 and 3 are simi-

lar at the beginning of the test.

The second special case of Equation 4-6 is that in which

the pumps continue evacuation and gradually reduce the tracer

gas concentration in the system. This condition corresponds to

QE = 0 in Equation 4-6. The equation thus becomes:

PE = P0e-St/V (4-9)

Curves 1 and 3 of Figure 4-3 indicate that the tracer gas

is pumped rapidly from the system once it is removed from the

vicinity of the leak. However, in Curve 2, the gas remains for

a considerable period. The important factor in determining the

shapes of these curves is the ratio S/V. The reciprocal quan-

tity V/S, having the dimensions of time, is generally called

the time constant of the system, T. A long time constant re-

sults in a large indicated partial pressure change during the

probing time. A short time constant permits rapid removal of

search gas from the system when probing has ceased.

If the requirements of rapid response and clean-up times

are not met, the leak-testing process is delayed to a large and

sometimes intolerable extent. As an example, consider the case

of a section of weld being probed at a constant rate. If the

response is poor, the leakage indication will appear after the

probe has moved well beyond the leak, and the path will have to

be retraced slowly until a second signal is obtained. The second

signal cannot be observed distinctly until the first signal has

dropped to a low level. Therefore, the decay or clean-up time

is equally as important as the response time.

Once the time constant V/S (volume/pumping speed) of the

system has been calculated, and the equilibrium response is known,
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it is possible to construct response curves similar to those

shown in Figure 4-3. Table 4-2 shows signal response as a per-
centage of final signal strength for several different time con-
stants.

Table 4-2

SIGNAL RESPONSES AS A PERCENTAGE OF FINAL SIGNAL STRENGTH

Percent of Final Si@nal

Signal Signal

Time Constant Increasin@ Decreasin@

0.5 39.4 60.6

1 63.2 36.8

2 86.5 13.5

3 95.0 5.0

4 98.2 1.8

The response of the detector in a leak detecting system

relative to the equilibrium response may be estimated with the

aid of the nomograph shown in Figure 4-4. Pumping speed, sys-

tem volume, and the time which has elapsed from the moment tra-

cer gas was applied to or removed from the system must be known.

The nomograph consists of the following parallel axes:

I. System volume, V

2. Pumping speed, S

3. Reference

4. Elapsed time, T

5. Relative response, Scales A, B, and C

A straight line is drawn connecting the two points repre-

senting values of S and T. This line intercepts the Reference

axis. A line is then extended from the volume axis at the value

of V, through the intercept on the Reference axis, and is ter-

minated on the Response axis. Scale A on the Response axis re-

presents the number of elapsed tlme constants before the signal

is read. Scale B represents the response relative to the equil-
ibrium signal after the tracer gas has been removed. Scale C

represents the response relative to the equil_brium signal after

the tracer gas has been applied. The utility of the nomograph

can be extended to any range of values by multiplying only the

V, S, and T values by ten raised to an appropriate power. The
response axis need not be so modified.
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4.5.3 Detector Location

In recent years, many papers dealing with dynamic (steady-

state) leakage measurement have been published. To increase

the sensitivity of this method, it is often suggested that the

detector be connected between the diffusion pump and the fore-

pump (see Figure 4-5). While some authors conclude that such

an arrangement does not show any improvement (Refs. 4-6 and 4-7),

or that an improvement may be obtained under certain conditions

(Ref. 4-8), others assert that by this procedure the change in

probe pressure in the forepressure line can be considerably great-
er than in the test chamber (Refs. 4-9, 4-10, and 4-11). These

differences in interpretation form the basis for extensive dis-

cussions in current technical periodicals (Refs. 4-7, 4-12, 4-13, "
4-14, and 4-15).

D.J. Santeler (Ref. 4-16) summarizes these discussions by

stating that whether or not an advantage is gained depends on

the factor that is limiting the ultimate sensitivity of the test.

In a clean system, the ultimate sensitivity may be limited by

the partial-pressure sensitivity of the detector. In this event,

the pressure amplification obtained on the forepressure side will

result in a sensitivity gain. In a contaminated system, or in a

search for extremely small leaks in the presence of large leaks,

the sensitivity is frequently limited by the resolution of the

detector in distinguishing tracer-gas partial pressure from the

background. In this event, forepressure leak detection results

in amplification of both tracer signal and background and unless

selective pumping means are employed, no gain in the concentra-
tion ratio is realized.

When the leak detector is connected on the forepump side of

the diffusion pump, the forepump removes gas from the system by
a batch process and the pressure of its inlet side tends to fluc-

tuate. These fluctuations contribute to the noise level of a

sensitive detecting element if it is directly connected to the

mechanical pump. The effect can be greatly attenuated by locat-

ing the detecting element in the line between two diffusion pumps

connected in series. An alternative approach is to place a bal-

last tank or a throttling valve between the forepump and the de-
tector (see Figure 4-5).

4.6 TRACER-ACCUMULATION TESTING

When the tracer-accumulation technique is used, the device

to be tested is pressurized with the tracer gas and placed in a

leak-tight chamber. The concentration of tracer gas in the cham-

ber is then monitored as a function of time. Depending on the

instrument being used for monitoring, the chamber can either be

evacuated or remain at atmospheric pressure. The important charac-

teristic which defines accumulation (static) testing is the con-

centration of the increased tracer gas in the test chamber during

the testing period. In general, accumulation testing can be more

sensitive than steady-state testing, since the sensitivity can be
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increased simply by increasing the accumulation time, assuming

that outgassing and leakage into or out of the test chamber are

negligible.

The governing equation for leakage measured by accumulation

testing is
dP

Q = V _-_ (4-10)

Consider, then, a test object of volume V_ at initial pressure

PI - Pl 0 , placed inside a chamber, with V2 as the volume of the

chamber not occupied by the test object° The chamber is evacuated

and sealed off at an initial pressure P2 = P20 = 0. A gage at-

tached to the chamber measures the pressure P2.

Applying Equation 4-10 to both volumes Vl and V2 results in

I dP_ _ 1

V_ dt -Q

dP2 _ +Q
V_

From these can be written

dP dP2
Vl _-_ = -V2 d--_-

(4-11a)

(4-11b)

(4-11c)

integrating

so that

P: P2

Pl_ P_0
-V2dP_ (4-11d)

Vl (P, - P: u) = -V2 (P2 - P2_)

For a leak having a conductance C and a flow rate Q,

Q = C(PI - PI 0) = C(P2 - P_0 )

(4-11e)

(4-11f)

Combining Equations 4-11e and 4-11f,

Q = C [P:0 - P_ (i ÷ V2/V:) ] (4-11g)

But Q is also equal to (V2) dP2/dt from Equation 4-11b.

Substituting Equation 4-11b in 4-11g and simplifying gives

Rearranging and integrating with respect to P2 and time t,

[°cvivlIin - IVI+V VI = -Ct V2 (4-11i)

ic I V_ P20
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Now, since P20 is zero, the conductance of the leak can be
calculated in terms of elapsed time T and the pressure P2 in the
outer chamber. (It is here assumed that PI 0 was known when the

object was placed in the chamber and, therefore, that the change

in PI 0 before testing began was negligible.) This calculation,
of course, is based on the assumption that the total conductance

of all leaks in the object is relatively small.

Equation 4-11i may be expressed in exponential form to show

how P2 varies with time for a given leak conductance and initial

pressure. Thus,

ll (VIV2(vl(IP2 = VI_92 P1° - e (4-11j)

P2 approaches (Vl/(Vl + V2)) P*0 with time.

The above analysis is also applicable when the outer cham-
ber is not evacuated but contains an atmosphere in which there

is no tracer gas. In this case, P2 represents the partial pres-

sure of tracer gas in the chamber.

The accumulation technique is useful when

l .

2.

•

•

A reading of total leakage is desired.

The leak to be measured is smaller than the maximum

sensitivity of the leak detector in the steady-state

mode.

The background contamination is severe, making it
difficult to stabilize the leak detector for ordinary

steady-state testing•

There are surfaces or a number of possible leak

points not feasible or economical to check individ-

ually.

The accumulation chamber should be made reasonably tight

to prevent loss of tracer gas by direct leakage. The accumu-

lation chamber should also be made of nonpermeable material, to

minimize losses by permeation. If the accumulation chamber has

an unsymmetrical shape, some means should be provided to circulate

the air within the chamber. This will tend to prevent an uneven

concentration of tracer gas. Circulation is also necessary when

the chamber is of a large volume or when a high-density tracer

gas (that tends to stratify) is used.

A shortcoming of this method is that during the period of

waiting for the tracer gas concentration to increase, it is also

possible for adsorbed gases to be released. Frequently this out-

gassing will interfere with the detection of the tracer gas, re-

sulting in biased leakage values. The use of a partial-pressure

analyzer will identify the various gases present and allow virtual

leaks to be distinguished from real leaks.
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4.7 LEAK LOCATION TECHNIQUES

Although there are numerous techniques which can be used to

locate leaks, bubble emission, tracer probe, and detector probe

are the methods most frequently used. Techniques involving sonic

energy, high potential discharge, and chemical reaction are use-

ful under rather specific conditions.

4.7.1 Bubble Testing

The immersion or covering of a leaking part by a liquid

leads to the formation of bubbles at the source of the leakage.

Bubbles are emitted from a leak when the internal pressure ex-

ceeds the external liquid-head and surface-tension forces. Bubble

size and frequency are functions of gas flow rate, leak size,

and surface tension; these effects are discussed in References

4-17 and 4-18. In the simplest example, that of a single cylin-

drical capillary, the equilibrium bubble pressure is given by

2o

P = P0 + pgh + _-- (4-12)

representing the atmosphere pressure above the liquid, the grav-

itational head of the liquid, and the pressure due to surface

tension of the bubble as it begins to form at the liquid end of

the capillary.

As the gas flows through the capillary (leak), each bubble

forms and expands, ultimately being attached to the rim of the

leak by a neck, as illustrated in Figure 4-6 for the case of

liquid wetting the leak channel.

Assuming that the bubble formed at the end of a tube is part

of a sphere, then as the bubble is being generated, its radius R

first decreases, as indicated by Figure 4-6(a), until it reaches

its minimum value r, corresponding to the radius of the capillary

as shown in Figure 4-6(b). Thereafter the radius RB increases

to form the expanding bubble shown in Figure 4-6(c). This vari-

ation implies that the term 2_/R in Equation 4-12 has a maximum

value, 2o/r, corresponding to the maximum value of excess pres-
sure.

When the bubble buoyancy exceeds the surface tension re-

straint at the neck, the bubble is detached and rises to the

surface. Bubble detachment occurs when

4z R_pg
= 2zro (4-13)

Equations 4-12 and 4-13 present almost the total picture

of bubble formation and growth. In more rigorous equations,

viscosity affects the bubble size; however, this is considered

negligible (Ref. 4-18) in most leaks. With an increase in vis-

cosity there will be a small increase in bubble size.
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Figure 4-6. Bubble Formation at a Leak Site (Reprinted

with permission from J.G.S. Biram and G.

Burrows, "Bubble Tests for Gas Tightness,"

Vacuum, Vol. 14, June 1964, p. 223.)

The external pressure may be regarded as constant; there-

fore, there is a critical value of the pressure inside the bubble

which must be reached if the bubble is to expand beyond the hemi-

spherical stage. This condition imposes a limit on the applica-

tion of bubble testing. For example, if the end of the capillary

is just submerged in water, _ = 73 dynes per centimeter, and the

capillary is supplied with gas at a differential pressure of

one atmosphere (i.01 x 106 dynes per square centimeter), than

2 × 73
r = = 1.45 x 10 -4 cm

1.01 x 10 _

This is the smallest capillary radius that could be detected by

means of a bubble for the given pressure difference.

If, however, a liquid of lower surface tension were used,

such as methyl or ethyl alcohol, then the same differential

pressure would allow a bubble to be formed at the end of a cap-

illary of radius

2 x 23
= 4.5 x 10 -5 cm.

1.01 x 106

This radius is less than one-third of the smallest radius of a

capillary which can be detected when water is used. With liquids

having lower surface tensions, leakage rates 1/50 to i/i00 of the
lowest rate detectable when the bubbles are formed in water can

be detected.

Another factor which affects the sensitivity of bubble test-

ing is the average size of the bubbles evolved. It may be seen

by an examination of Equation 4-13 that the size of the bubble
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increases with an increase in surface tension. Therefore, the

generation of a large number of bubbles requires the use of
liquids having a small surface tension.

Bubble size is influenced by mechanically vibrating the

test object. If the test object is vibrated, the bubble breaks

off before it would if the test piece were stationary. This

can be useful, as it increases the bubble rate for a given leak
rate.

If the pressure over the liquid is reduced below atmospheric

until bubbles just emerge from the end of the leakage path, lim-

itations are imposed by the tendency of a liquid to degas and

boil under conditions of reduced pressure. A comparatively high

boiling point permits reasonably low pressures to be realized

without boiling. To enable the smaller leaks to be detected

it is desirable to use liquids having low values of surface ten-

sion; but such liquids also have correspondingly lower boiling

points. These liquids may boil spontaneously before the pres-

sure over the liquid can be reduced sufficiently to increase

the rate of bubble formation significantly. Therefore, the

choice of liquid for these tests must be very carefully made.

In summary, it is desirable to use a liquid of low surface

tension and low viscosity. Pressure has to be higher with

capillaries of small diameter. Finally, the use of a low-vis-

cosity, low-molecular-weight gas will increase the flow rate

through the capillary.

4.7.2 Probe Techniques

There are two distinct techniques for locating leaks with

instrument probes. One employs a tracer probe and the other

a detector probe, as shown in Figure 4-7. By the former tech-

nique, a fine stream of tracer gas from the tracer probe is

played over the suspected leak area. Tracer gas is drawn into

the interior of the test object if a leak is present, and is
discovered by the leak detector.

For the detector probe, tracer gas blankets one side of

the system being tested. The detector probe is then passed

over the suspected area to determine if tracer gas is leaking

through to the detector side of the system. The response equa-

tions given in Section 4.5 for steady-state testing apply to

both probe techniques. (A detector probe is also known by such

names as sniffer probe, pressure probe, sampling probe, and re-
verse probe.)

Selection of one or the other methods depends on several

factors. For example, the detector probe technique of leak

location should be used if the system must be tested in a pres-

surized condition, or the tracer gas is readily absorbed on the

leak surfaces. If a tracer probe is used and the gas is absorbed

in the leak, small leaks will go unnoticed since an equilibrium
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Figure 4-7. Leak Location Techniques

is not quickly established between the leak surfaces and the

tracer gas. (See Section 6.5 for details.) The detector probe

technique may also be used if the detector has a sensing ele-

ment that operates unde_ atmospheric pressure.

Leak location by means of the tracer probe technique is

usable on systems which can be evacuated or otherwise subjected

to pressures below atmospheric. It is necessary that a port or
aperture be available for attachment of the detector.

Other factors affect the choice of one technique over the
other.

• It may be desirable to check for leakage in one

specific direction where the existence of check

valve leaks is suspected (see Section 6.5)

• The system might have long, narrow passages, so

that it will be prefereable to pressurize rather
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than evacuate them. This is because the rate of

travel of molecules in narrow evacuated passages

is slow and a long time is required to reach the

operating pressure of the leak detector.

4.8 SEALED UNIT TESTING

Two methods of testing sealed units are:

• Fill with tracer gas under pressure during manufac-

ture. Test for gas leaks.

• Seal the unit, subject to high-pressure tracer gas,

and remove tracer gas from the outside envelope.

Test for gas leaking from the sealed unit. This

technique is called "bombing" or "back-pressurizing".

4.8.1 Unit Sealed With Tracer Gas

For the first of these systems, the effect of leak size

on detector signal may be represented in the generalized graph

of Figure 4-8. Here the leak rate, derived from the signal of

the detector, is plotted against the leak conductance. The

curve represents the situation where the pressure of the tracer

gas is initially atmospheric and where a fixed time elapses be-

tween manufacture and testing. Because of the time lapse, the

curve departs from the line of unit slope, reaches a maximum,

and falls for larger leak conductances. This is caused by the

diffusive loss of gas from a leaking specimen. The minimum de-

tectable leak is thus fixed by the detector, and the maximum

detectable leak by the time lapse before testing (among other

factors such as the internal geometry of the unit and the rate

of release of absorbed tracer gas from the internal surfaces).

It follows from this description that extremely large leaks

cannot be detected by this procedure. Some independent method

of testing, such as immersion bubble testing, must be used to

detect extremely large leaks. It also follows that this method

will not be quantitative on large leaks. The leak size at which

this method ceases to be quantitative may be calculated from the

magnitude of tracer-gas loss prior to leakage measurement.

4.8.2 Back-pressurizing Technique

Back-pressurizing is a term coined by Howl and Mann (Ref.

4-19). Their article is the most comprehensive treatment of

this technique.

The test unit is held for a period in a pressure vessel con-

taining tracer gas at a high pressure. The gas enters the unit

through any leak and is detected when the unit is taken out of

the pressure vessel and the gas issues from the leak. The rate

of the flow depends not only on the conductance of the leak but

on how much gas has entered during the pressurizing period.
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Figure 4-8. Detector Response for a Unit Sealed with Tracer

Gas (Reprinted with permission from D.A. Howl

and C.A. Mann, "The Back-pressurizing Technique

of Leak-testing," Vacuum, Vol. 15, No. 7, 1965,

pp. 347-52; Pergamon Press Copyright 1965 (Ref.

4-19) .)

The leak-conductance signal-response curve for the back-

pressurizing process is shown in Figure 4-9. For very small

leaks, where the final signal is a function of the leak conduc-

tance and the partial pressure of the tracer after pressurizing,

itself a function of leak conductance, the curve is concave and

tangential to the x-axis. The curve crosses the line of unit

slope where the leak conductance and pressurizing conditions are

such as to raise the pressure of the tracer to one atmosphere.

The curve remains above this line for a range determined by these

two factors and, in addition, by the time lapse before testing.

The physical significance of this curve being above the unit slope

is that the pressure of the tracer in the specimen is above atmos-

pheric at the time of test. The curve subsequently falls, as in

Figure 4-8.
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nique (Reprinted with permission from

D.A. Howl and C.A. Mann, "The Back-

pressurizing of Technique of Leak-test-

ing," Vacuum, Vol. 15, No. 7, 1965, pp.

347-52; Pergamon Press Copyright 1965
(Ref. 4-19).)

Although the minimum and maximum detectable leaks are shown

as greater in Figure 4-9 than in Figure 4-8, this is not of gen-
eral significance. Back-pressurizing may be more or less sensi-

tive than a test with previous filling with tracer, depending on
the pressurizing and test conditions.

The discussion which follows indicates how the sensitivity
may be determined or the conditions specified for a given sensi-

tivity. The discussion includes the effect of absorbed tracer

gas on the outside of the test specimen, which can be one of the
main practical disadvantages of the method.

The back-pressurizing technique of leak testing is carried
out in three distinct steps:
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A tracer gas at high pressure is applied to the ex-

ternal surface of the test specimen, causing inflow

of the tracer gas through any leak.

A period ensues following the removal of the source

of tracer gas during which some tracer gas is lost

from the test specimen through the leak.

A test for leakage is performed on the test speci-

men.

Consider the application of the back-pressurizing technique

to leaks through which the flow is either purely molecular or

purely laminar (see Section 6). In leak-testing practice the

leak with molecular flow is the more important, since it is

necessary to detect leaks down to 10 -_ torr liter per second

or less, although leaks of 10 -3 torr liter per second may still

show molecular flow characteristics. For capillary leaks it

can be shown that the leakage rate must be less than 10 -6 atm-

cc/sec for purely molecular flow and greater than i0 -_ atm-cc/

sec for purely laminar flow.

4.8.2.1 Molecular Flow Leaks. Assuming that the flow in and

out of the system is molecular, the equation derived (Ref. 4-17)

for the measured flow after performance of the three-steps de-

scribed above is:

Q = CA PE 1 - exp exp - V (4-14)

Figure 4-10 shows a plot of the measured leakage Q against leak

conductance CA for typical values of PE, V, tE, and t R. Most

leak detector systems using tracer gases are designed to detect

leaks very much smaller than i0 -s torr liter per second. An

assessment of the smallest detectable leak must therefore be

based upon the molecular flow e_uation. Furthermore, for the
very small leaks (less than i0 -_ torr liter per second) it is

possible to reduce this equation to a very simple form:

PEtE
2 (4-15)Q = V CA

This may be rewritten:

Qv
PEtE = _--r (4-16)

CA

The smallest detectable leak CA depends upon the minimum leak

rate Q, which gives a signal on the detector appreciably above

the background. Equation 4-16 defines the value of the product

PEtE necessary to detect leaks as small as CA on a system with

a background signal appreciably smaller than Q.

Figure 4-I1 shows the product of PEtE plotted against CA

for various values of system volume, the minimum detectable sig-

nal being taken as 2.5 × 10 -8 torr liters per second.
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Figure 4-i0. Computed Relation of Leak-rate Signal to Leak

Conductance for a Particular Set of Conditions.

(Reprinted with permission from D.A. Howl and

C.A. Mann, "The Back-Pressurizing Technique
of Leak-Testing", Vacuum, Vol. 15, No. 7,

1965, pp. 347-352; copyright 1965 Pergamon
Press (Ref. 4-19).)

It is common for the noise level or background signal of

the detector to result mainly from the presence of tracer gas

which has been absorbed on the surface of the system during
pressurizing. The amount of this absorption, and of the sub-

sequent desorption during the leak test, is dependent on the

gas used and on the material of the outer surface of the speci-
men and its finish. Generally, bright metal surfaces absorb

least, oxidized metal surfaces absorb significantly, and such

porous materials as graphite absorb excessively. As a first

step in any back-pressurizing test, the signal from desorbed

tracer gas should, if possible, be measured experimentally,
using a specimen of the material which will be used.

The effect of significant absorption can be _educed by

heating the specimen. This can be done either after pressur-

izing or, to minimize delay before testing, by heating while

pressurizing. While hot, the tracer gas desorbs rapidly. In

tests on nuclear fuel elements using helium (Ref. 4-19), tem-

peratures in the range 200 - 400oC have been found satisfactory ,_r
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?he above i.s a simplified equation which a._sumes that:

CA _ (4-18)
t_ PE > "2 p_ _ .

This imF, i-e" that EquatJo_ 4-17 is valid for leaks greotcr thin

th,._ range of i0 -'_ tort liters per se=c::d per atmo_p]:ere, if the

volume of the s:/stum is in t_,e cubic c_ntimet ar r_n,ie.

Equation 4-1.7 for laminar flow ]ed]:_; breaks down ".:h,_:., in

the seco._d staqe, with the _est soot_men in the :_tmos:sheI_,
.-_._-.,-a_ainst t:,.: outflow

the diffusion of air into t'ne test 5?c ....._......

of gas bccc, mes appreciatie- This is areitlari!y ass_ed to
occur when the pres[:ure in the system is less than tv.lce atmos-

pheric pressure.

Calculations using E__uation 4-17 for laminar rio'.-, are co:<--

pared with the results when using Equation ,,-14 for _m].ecular

flow on Figure 4-10. Equation 4-17 .s plotted oi:iy between

4 x i0-_ and 8 × i0 -_ tort ]iters Fer second per atmospner _,

the range in which It is applicable.

In gen-_¢al, the size of the leaks which may be detected de-

pend om loss of gas during the seccnd stage. Th_ range of detec-
table leaks can onl,." :_e extended app_eciab!y hi' r_ducing tR, the

time m__tween back-pressu=.'zing ;_no leak tes_:ing.
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Secti on 5

PLANNING LEAKAGE TESTS

5.1 DESIGN FOR ACCESSIBILITY

If a system is to require leakage testing, such a requirement

should be given consideration during the design period. Too often

a system is completely constructed before any thought is given to

the need for leak testing. At the end of construction, it may be

impossible either to pressurize the system with tracer gas or to

make connections to the system for evacuation. Therefore, if

leakage testing is to be required, a system should be accessible

by which it may be pressurized or evacuated.

Well-designed test connections should be used. Such connec-

tions can be a major source of difficulty on account of leakage,

excessive tracer gas contamination, and dirt. Minimum amounts of

elastomers and plastic should be used. Rubber and plastic tubing

should be avoided because they will often absorb tracer gas which

is difficult to remove by pumping. Only the shortest lengths of

rubber tubing should be used. A light film of good, low-vapor-

pressure grease should be applied to gaskets. Any excess should

be removed since large quantities of grease act as a source of

tracer-gas contamination and as a dirt catcher. The system may

become so dirty because of excess grease that a good vacuum can-
not be attained.

5.1.1 Leaks in Series

It has long been recognized (Ref. 5-1) that for a device

which will require leak testing, no design which may develop voids

in series with possible leak paths is acceptable. For example,

if two heavy plates are to be welded together along mating edges,

it is best to make either a full penetration weld or a partial

penetration weld from only one side. It is undesirable to allow

partial penetration welds from opposite sides since a void can be

left between the welds. It would then be difficult to check and

assure that there is not a leak through both welds because the

speed of response to leakage from the void would be very slow.

The leak path (Figure 5-1) may consist of one or more small

chambers connected by very fine capillaries. The pressure in a

chamber (the intermediate volume) is atmospheric immediately af-

ter pressurization of the system, and the driving force (or pres-

sure difference) between the chamber and the outside atmosphere

is zero at this time. As the inner capillary (between the sys-

tem and the chamber) conducts tracer gas to build up the pressure

in the chamber, the pressure difference between the chamber and

the outside atmosphere increases. With this increased pressure
difference there is a slow increase in the flow rate to the out-

side. There will be a delay in time before atmospheric air is

removed from the leak path and the path becomes filled with tracer
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gas. The presence of the leak will not be detected until tracer
gas issues from the outside surface of the wall.

Thus, consideration of the time delay in leak detection is
important when an intermediate volume is present in the total leak
path, since a time lapse may prevent a leak from being detected.
A review of leak-test procedures is necessary to establish the
time lapse to be expected between component pressurization and

measurable leakage. This can be accomplished by solving the de-

rived equations for typical values of parameters associated

with a particular configuration (Ref. 5-1).

°°._[

° ° ; • ._ ._. J,"

• °',° _' ' " 'Z

'INSIDE OF;"

,': SYSTEM "::

"' • ", .... a"

.'-TRACER ' '2

"::"..:'::."-..".i
. - .*.'."

.'. I

", . .,. ,

• :..-...

• o

WALL OF SYSTEM

INNER OUTER

CAPI LLARY CAPILLARY

ATMOSPHERE

Figure 5-1. Sketch of Typical Series Leak Path

Testing of a fluid handling system will be greatly facili-

tated if the ports or gasketed openings which are provided for

leakage testing are made large enough to permit rapid evacuation

or pressurization. Large openings are especially desirable when

the system is to be evacuated for leakage testing. Vacuum pump-

ing of a vessel having a volume of several cubic feet through a

valve having an orifice diameter of only one-eighth inch requires

a pumpdown time which is not only excessive but also very costly.

Instructions for welding without enclosing sealed voids may
be found in current publications (Refs. 5-2 and 5-3).

5.1.2 Component Testing

When a vacuum system is to be constructed, it is advisable

to test each individual component for leakage prior to assembly.

If this procedure is followed, any leaks indicated during a final

test of the assembled system should be located only at the joints,

unless a component has been damaged during assembly by the appli-
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cation of excessive torque or thermal stress, for example. As
a further safeguard, the vacuum tightness of the system can be
checked as each component is added and assembly proceeds.

It is always good practice in repairing leaks found during
leak hunting to make permanent repairs whenever possible. Tem-
porary repairs should be made only if the system must be operated,
for a limited length of time, before permanent repairs can be
made. A permanent repair means reworking the part involved or
replacing the part. Some common sources of leaks and possible
methods of repair are indicated below (reprinted with permis-
sion, from Vacuum Technology, by A. Guthrie; John Wiley and Sons,

Inc., New York, 1963, pp. 500-501) (Ref. 5-4):

l • Static _asket seals

• Tighten seal but not too much

• If tightening does not work, shut down the system

and examine the gasket and gasket surfaces.

• Replace any damaged gasket and smooth rough sur-

faces (fine emery cloth).

• When the gasket is not damaged, clean (acetone,

etc.), coat with light film of good-quality vacuum

grease (when permitted), and reassemble seal.

• Do not use sealing materials such as Glyptal* to

stop the leak. This procedure is temporary and

the gasket cannot be used again.

• Movable, @asketed seals (Wilson, chevron, etc.)

• Add a small quantity of good-quality vacuum grease

to the moving member and operate this member a few

times through the seal.

• If vacuum grease does not work, try tightening the

retaining rings on the seal.

• If tightening does not work, dismantle the seal and

examine the component parts• Replace all damaged

parts.

• Flare fittin@s (and similar metal-to-metal seals)

• Tighten the compression nut moderately. Too much

tightening is likely to twist the tubing passing

through the fitting.

• If tightening does not work, take the joint apart.

• Try annealing the copper flare.

• If annealing does not work, use a thin coating of

a suitable sealant (Glyptal*, etc.) on the surfaces
that make contact•

*Registered trademark of the General Electric Company.
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4. Soldered, brazed, and welded _oints

• For temporary repair, use a cement. This method

works for small leaks where the diffusion pumps

are in their operating range. A "thin" cement

(clear Glyptal, Eastman Kodak Resin 910, etc.)
can be used for the smallest leak. For somewhat

larger leaks use a more viscous cement, such as

red Glyptal.

• For permanent repair, rework the joint or replace

the part.

5. Leaks throu@h metal parts

• For temporary repair use a cement, as in the case

of soldered, brazed, and welded joints.

• For permanent repair, rework the part involved (as

appropriate) or replace the part.

• Peening the leak is not reliable.

6. Glass-to-metal seals

• A temporary seal can be made with a cement or wax.

• Rework wax seals•

• For permanent repair, replace the seal.

• Glass-to-@lass _oints, cracks, and pinholes in a

@lass system

• For small leaks, use a cement (at room temperature)

or heat the glass and apply a suitable wax (picein,

sealing wax, etc.).

• For a large leak, rework the glass or replace the

part of the system where the leak is located.

5.1.3 Safety Considerations

Potential hazards to personnel safety must be taken into

account when designing the leakage test. These are: the flam-

mability of the tracer gas, the possibility of asphyxiation or

poisoning, and the danger of explosion or implosion of a pres-

surized system• As long as the designer is aware of these con-

siderations from the beginning, it is possible to test with lit-

tle inconvenience or danger• Included in Appendix A, along with

physical properties of tracer gases, is a list of the safety

precautions to be observed with the following gases: ammonia,

argon, carbon dioxide, dichlorodifluoromethane, helium, hydrogen

chloride, hydrogen, krypton, methane, neon, nitrogen, nitrous

oxide, oxygen and sulfur dioxide.
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5.1.3.1 Flammability. Hydrogen, methane, butane, and many of

the liquids used in leakage testing are flammable. When these

tracer fluids are used they are usually mixed to some extent with

air. These potentially explosive mixtures are dangerous, and pro-

cedures should be taken to provide adequate ventilation and to

prevent accidental ignition.

The precautions listed below will apply in all cases of flam-

mable gases. Use of hydrogen enhances risk, and the precautions

given are essential (Ref. i-6)_

i. Before hydrogen is admitted the system under test should

be evacuated or purged with nitrogen. This will avoid

an air-hydrogen mixture anywhere in the explosive range

(4 percent to 74 percent of hydrogen in air, by volume).
The same should be done with a rigid hood. With flexi-

ble hoods the volume between hood and vessel under test

can usually be made very small - much less than the i0
cubic feet referred to below. If this is done, evacua-

tion or purging is not essential.

A hydrogen/nitrogen mixture is safer than pure hydrogen,

if it can be used.

.

•

Testing should be done in a well-ventilated place, iso-

lated as far as practicable from other processes. A

room with a high roof, adequately vented at its apex,

and with enough low-level air inlets is desirable. A

small room with low roof and a minimum of openings for

ventilation should not be used for testing with hydrogen.

Special precautions will be necessary when the volume

between the hood and system under test approaches i0

cubic feet, as there is then risk of a major explosion.

Safety can then be insured only by testlng the system
in a blast enclosure, or cell. This should have strong

walls and a light roof; persons should not be allowed

to enter during a test. For safety, and to avoid hav-

ing to provide a test cell unnecessarily, the volume

between a hood and the enclosed system should be as

small as possible•

Test areas, particularly test cells, should be free from

obvious sources of ignition• Smoking must be prohibited,

particularly when hydrogen is used. Electrical equip-

ment may pose a hazard. If there is a possibility

that, in the event of a leak, such equipment will be in

an explosive atmosphere, then either the equipment must

be repositioned outside the danger area or special equip-

ment must be used. Such special equipment is either

pressurized with inert gas or is intrinsically safe.

A discharge of static electricity is a possible cause

of ignition• Therefore all metal parts liable to be-

come charged should be grounded, and any flexible non-
metallic hood should be made of "anti-static" material.
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This would mean that the resistance of the leakage path
from any point on the hood would not exceed l0 T ohms.

It is advisable for personnel, when testing with hydro-

gen, to avoid wearing clothing liable to produce static

charges, and to wear shoes with conducting soles. An-

other precaution is to use tools which cannot produce
sparks.

•

If possible, hydrogen cylinders should be in a storage

area separate from any occupied building. The storage

area should be well ventilated. Permanent piping should
be provided to convey hydrogen to the test area.

The above precautions are also relevant where other flam-

mable tracer gases are used, although hydrogen easily

presents the greatest risk. Where a large system is be-

ing tested, or large volumes of hydrogen used, it may be

advisable to provide monitoring equipment giving a con-

tinuous indication of the hydrogen-in-air content in the

test area. Intrinsically safe detectors are available.

5.1.$.2 Asphyxiation. Most tracer gases are not toxic. However,

if a question exists about the toxicity of any particular gas, a

competent authority should be consulted (Ref. 2-2). Toxicity of
some tracer gases is given in Appendix A.

None of the tracer gases will support human life. That is,
if they replace oxygen in a volume, this volume cannot be entered

without proper respiratory equipment. In this case, proper equip-

ment is a gas mask which contains its own oxygen supply.

The oxygen required for breathing might be accidentally re-

moved from an area. For example, if one of the halogenated hydro-
carbons is used as a tracer gas, it will stagnate and settle to

the lowest area in the system. If an operator is attempting to

use a detector probe in this low area, the tracer gas which set-

tles may eventually displace enough of the air to produce asphyx-

iation. In this case, adequate ventilation is necessary. Such

ventilation, however, must be performed carefully. If the tracer

gas is dispersed too rapidly from the place where it is escaping
from the system, leak location will be difficult.

5.1.3.3 Explosion. If the system is pressurized with tracer

gas, the rupture of its walls can produce considerable damage

from release of the stored energy. It might seem that little pre-

caution is necessary in pressurizing a small system; however, the

damage from the rupture of a gas-filled volume results from the

total mass of gas. Therefore, a small system at high pressure

and a large system at low pressure may be equally dangerous.

Large systems need proof-testing prior to leakage measure-

ment. The proof-test may be performed by pressurizing with gas

to a high pressure while the test area is evacuated, or by a hydro-

static test using water. The disadvantage of the gas proof-test

is that considerable damage can result if the system bursts dur-

ing testing. On the other hand, should hydrostatic testing be
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performed, any small leaks in the system will become clogged
with water. Therefore, if at all possible, hydrostatic testing
should not be performed on systems where the allowable leakage
must be less than 10-6 atm-cc/sec. The American Society of Me-
chanical Engineers code for unfired pressure vessels specifies
that a hydrostatic test at 1.5 times the working pressure shall
be performed on all code fabricated vessels (Ref. 5-5).

When a system is to be pressurized a pressure regulator fitted
with a safety over-pressure device should be included, so that a
pressure in excess of the design pressure can never be applied to
the system.

Olson (Ref. 5-6) has related the hazard potential associated
with a volume of compressed gas to its TNT equivalent. Figure 5-2
is a logarithmic plot of tank pressure versus the energy equiva-
lent in pounds of TNT per cubic foot of tank volume. The explo-
sion hazard can be readily seen. For example, a tank at i00 psia
contains the energy equivalent of 0.023 pound of TNT per cubic foot
of tank volume. A 10-cubic-foot tank under those conditions has
the explosive potential of 0.23 pound of TNT.

O'3
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Figure 5-2. Tank Pressure Versus Energy Equivalent
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5.1.3..4 Implosion. Although they are not pressurized, glass

bell jars which are evacuated can be a dangerous source of flying

glass from implosions. Should a crack occur in the bell jar, an

unequal force distribution can shatter it. Pieces of flying glass,

propelled by a pressure difference of approximately 15 pounds per

square inch, will travel great distances unless they should happen

to meet a safety shield or glass coming from the other direction.

This is particularly serious when the capacity of the vessel exceeds

approximately one cubic foot. For this reason all evacuated bell

jars should be enclosed in some safety shield.

Safety shields should be used on bell jars under all condi-

tions. One mistake often made is to omit them unless the system

is to be evacuated to a high vacuum. The increase of the pressure

on the bell jar from one torr to 10 -3 torr is negligible. The

major part of atmospheric pressure is exerted on the jar when

rough evacuation takes place; the increase in pressure difference

by evacuating the bell jar further is very small.

5.1.4 Fffects of Gas Properties

Various properties of tracer gases affect the results of leak-

age testing. Gas density has an effect on the tendency of the tra-

cer gas to stratify, or form layers, in the test volume, giving

uneven readings for various leak locations. The diffusion rate

of a tracer gas has an important effect on test results, particu-

larly if there are restrictions or long, narrow, blind passages

or crevices in the test volume. Variations in tracer-gas concen-

tration can give varying leak indications.

5.1.4.1 Gas Concentration. In many leakage measurements, it is

desirable or necessary to dilute the tracer gas used. Diluted tra-

cer gas might be dictated by:

1. Expense involved in the use of pure gas.

2. More linear or more stable response obtained at lower

gas concentration.

3. Pure gas producing a sensitivity much greater than
needed.

4. Danger of fire or explosion with a flammable tracer

gas (a dilute gas mixture reduces danger).

5. Inability to completely evacuate the system prior to

filling with tracer gas, so that a dilute tracer is

obtained during the pressurizing process.

Concentration of tracer gas in the system depends on its

partial pressure. Total system pressure is the sum of the par-

tial pressures of the gases in the system. Thus,

P = PA + PB + PC + .... (5-1)

Using Equation 5-1, the fractional concentration of gas A in the
system is:
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PA"A (5

"' - = ?C'A P :'A + P + ÷ ....B

A special tracer-gas mixture is often prep,lred by co:;_U_n_ng

volumes of dlfferen_ gases havlng uqual partial press_res. A

tracer qas such as helium is often m_xed with nitrogen for use

in leakage testlng of large systems.

Most leak detectors are to some extent specific to a partic-

ular tracer gas. As a general and approximate rule, the response

of a leak detector _o a measured dilute tracer-gas concentration

is proportional to the concentration of the tracer. For example,tracer .which leaks
,ixture containing one percent c,f a

with a gas r., - . ,_-_ ...... /sec -* . the leak detector
at an actual rate ot i _ _u _'_" _' _ " _ _ _n 4 _,__cc/sec-:
• id indicate a leakage rate or onxy • _Y_ =_'". %.... A_

signal wou . - • .... _ _ ._nv deviation _rom tnls rule u_F=,,,-,_
The magnituae ana ul_uu_u,. _ - _ The
on the predominant flow mode for the tracer gas in nhe leak.

expected predominant flow n_odes are d_scussed in Section o, "Flow

Characteristics- "

If the leakage is laminar, the flow will be inversely pro-

portional to the viscosity of the gas mixture. The mixture -.till
_,_av_ a vi_cosit'." proport_onai to the viscosity of the individual

species iF a relatiol%"

_, mlxture = NA qA + _B nB + NC _C + ' (5-3_

The estimated leakage for pure _zacer gas, Qest, may be cal-

culated from the relationship:

Qindica ted tracer _mixture %5-4)

Qest, pure tracer = Ntracer ntracer

The calculations are usually slmpl_ fled by the fact that the vls-

comities of most gases are similar (Table 6-i, Section 6.1).

Therefc_re, the measured leakage for laminar flow is approximately

related to the total leakage by the equation:

Qindicated tracer (5-5i

Qest, pure tracer = Ntracer

If the flow in the leak is molecular, leakage of the tracer

gas can be calculated from the measurement of leakage of the fol-

lowing m_-x ture :

Qindicated tracer I Mmixturel:/2 (5-6)
Qest, pure tracer = Ntracer \Mtracer

$. ]. 4. 2 Sfp,It_%On. If a tracer gas is added to air already

in the system, a" uniform mixture is not readily achieved. The tra-

cer gas will rise toward the top or settle toward the bottom of

the system, according to its density. This stratification is
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more pronounced with hich-molecular-_.'elght gases a_:,_ '..'ith ,_asc._

efa low diffuszon ceefficiena.

precautions should be taken to m..ix the tracer wlth the d_lu-

ent (Tas _urlng pressurlzatlon of the s:,,ste,_. T.hls z:ay ke dor-_ b':'

provlding some means of cJLculatlng t_,e gases within the system.

Alternatlvely, both the tracer and diluent cases nay be _d_:d

simultaneously tl_rough a rake or screened auerture. There should

be no stratiflcation problem inslde the system prcvidzi_g precau-

tions are taken to mix the tracer thorouqh:y with dil_,cnt gas In

pressurizing _he system. When the mzxture _=: in equllzbrluun the

concentration at height h above the bottom w!ll vary as:

Ch/C O = exp :-Mhg/R:T) (5-7)

_.._. 4.,_ ;'_'C_'uz'cr.. A tracer gas of low diffus_vlty speeds iuak

location because the tracer gas remains close to the leak exlt and

allows accurate location of the !oak wlth a detector probe. Scan-

ning of the suspected area must be done thoroughly, however, to

avoid passing over the leak.

A tra z_r g_s _f high diffusiv_._y i_ necessary to fill _':_'-

,_e-sac& or blind passages within a reasonable time. A low diffu-
sion rate _,ould n<;t allow tracer gas to traverse a tortuous leak

passage; hence would make ?.__ak detection unreliable. (Table 5-I

gives the diffusivlty of certain gases used In leak dctectxcn
work. )

The time required for a gas to diffuse Into or out of a

blind duct is given by:

t ~ _.--_ Zn _ -:.: /'N (5-8)
" L uj

Figure 5-3 is a plot of diffusion t1_.e in a blind duct for a n_n-

ber of tracer gases, usirg Equation 5-_.

Two procedures may be used to fill a duct wlth tracer gas.

If the duct can be opened (perhaps by a valve) at the end remote

from the gas source, filling the duct with tracer gas w111 be ex-

pedited. The other procedure, which is much more diif_cult, zs

to evacuate the system prior to admission of tracer gas.

5.2 EXAMPLES OF TYPICAL TEST AIDS A_D FIXTURES

Two types of test procedure are discussed here: leakace mea-
surement and leak location (by probe techniques). Although there

are many simiiarities in principle, each procedure al,_ows for in-

dividual equipment and operating peculiarities. Many of these are

demonstrated on the following pages.
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Table 5-1

DIFFUSIVITY OF TRACER GASES

(i arm, 0-C)

Chemical

Gas Formula

Acetylene C2H2

Ammonia NH3

Argon A

Benzene C6H6

Butane C_Hl0

Carbon dioxide CO2

Carbon disulfide CS2

Carbon monoxide CO

Carbon tetrachloride CCI_

Ethane C2H6

Ethyl alcohol C2HsOH

Ethylene C=H_

Halogenated hydrocarbon F-If** CCI_F

Halogenated hydrocarbon F-12** CCI2Fz

Halogenated hydrocarbon F-21** CHCIzF

Halogenated hydrocarbon F-22"* CHCIF2

Halogenated hydrocarbon F-II2** CCI2F-CCI_F

Halogenated hydrocarbon F-II4** CCIFz-CCIFz

Helium He

Hydrogen H2

Hydrogen Sulfide H2S

Krypton Kr

Methane CH_

Neon Ne

Nitric oxide NO

Nitrogen N2

Nitrous oxide NzO

Oxygen Oz

Propane C3Ha

Sulfur dioxide SO2

Water H20

Xenon Xe

IN AIR

Molecular

Wei@ht

26.0

17.0

39.9

78.1

58.1

44.0

76.1

28.0

154.

30.1

46.1

28.0

137.

121.

103

86 5

204

171

4 00

2 02

34 1

83.8

16.0

20.2

30.0

28.0

44.0

32.0

44.1

64.1

18.0

13.1

Diffusion
Coe f flcient*

(Sg ft per hr)

0.55

0.66

0.61

0.30

0.33

0.52

0.36

0.67

0.28

0.49

0.38

0.52

0.30

0.32

0.33

0.37

0.25

0.28

2.7

2.6

0.53

0.51

0.72

i.i

0.70

0.68

0.52

0.68

0.39

0.42

0.85

0.42

* Values calculated from empirical equation of J.C. Slattery and R.B. Bird

(AIChE Journal, vol. 4, No. 2, 1958, pp. 137-42.)

**ASHRAE Standard Designation
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5.2.1 Leakage Measurement

On large systems, where rapid testing of a large number of

objects is required, testing time can be reduced by the use of a

testing hood to surround the entire test object with an atmos-

phere of tracer gas. This eliminates probing time and gives a

response proportional to the total leakage if several leaks exist;

the possibility of missing leaks by careless probing is also re-

moved. After the location of leaky test objects the hood may be

removed and the leaks accurately located by probing with a small

jet of tracer gas. A valuable adjunct to the testing hood is a

thermal-conductivity gage, calibrated to read directly the con-

centration of tracer gas in the hood.

5.2.1.1 Hood Testing. In hood testing, the form of hood used

depends on the task at hand. In a semipermanent assembly designed

for routine overall testing of large numbers of components, the

hood may be a metal chamber or bell jar. When testing one object

of a type almost any item can be accommodated in a polyethylene

bag. It can be dangerous, however, to use flammable or explosive

tracer gases in conjunction with plastic hoods which can acquire

an electrostatic charge.

A typical hood setup is shown in Figure 5-4. For small ob-

jects several manifolds are attached to one pump-leak detector

combination; this allows the objects to be set up or taken down

on one manifold while the units on another are under test. For

larger equipment individual pump-leak detector combinations are

required.

The test is made in the following manner:

• With the valve leading to the calibrated leak in an

open position, tracer gas is forced into the hood un-

til its concentration there is sufficient to give a

reading on the leak detector. This reading (A) is

proportional to the total leakage, which consists of

unknown vessel leakage and known leakage from the cal-

ibrated leak.

• The valve leading to the calibrated leak is then closed,

and a second reading (B) taken. This reading is, of

course, proportional to the unknown leakage alone.

The unknown leakage may be calculated from these two

readings. Thus, unknown leakage =

readin 9 (B) /conductance of

reading(A) - reading(B) X kcalibrated leak/ x

I pressure >difference (5-9)

• Equation 5-9 gives the unknown leakage in terms of the

two readings and the leakage through the calibrated

leak. Knowledge of tracer-gas concentration in the

hood is not necessary. The only requirement is that
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this concentration remain substantially constant while

the readings are taken. Normally, this requires from

five to ten minutes. Well-constructed hoods show prac-

tically no decrease in tracer-gas concentration for

considerably longer periods.

Figure 5-5 illustrates a type of manifold which allows con-

tinuous testing of a number of small vessels. The three testing

lines make possible three simultaneous operations: loading and

unloading, rough evacuation, and leakage measurement. Measure-

ment of leakage can be performed individually on each vessel, or

several vessels may be grouped in a single test. These measure-

ments are made by the hood method. If rejected vessels are set

aside for later attentlon, testing may be as rapid as the loading

and unloading can be performed. The calibrated leaks shown serve

both to test the effectiveness of the testing manifold and as a

reference standard.

5.2.1.2 Small Component Testing. For rapid testing, components

are sometimes leak-tested on a rubber pad on a base plate, by

sealing the component to the pad (usually with the help of vacuum

grease) and spraying some tracer gas around the component. If

leakage is indicated, the experimenter must determine whether the

component or the grease seal between pad and component or pad and

fixture is leaking. Furthermore, vacuum grease absorbs and re-

tains tracer gas. This produces a changing background signal due

to tracer gas in the setup which must be compensated for in ana-

lyzing the test results.

Duxseal and Apiezon Q are putties which can be used for

sealing in rapid testing. The component is sealed to a fixture

with the putty and pumped down. The system is then allowed to

stabilize at its maximum sensitivity. Tracer gas is passed over

the entire surface of the part, and then lightly over the joint.

If a leak is observed in the seal area, the setup is dismantled

and reassembled, using new putty. Seal material is used only

once and then discarded because the material may absorb tracer

gas and allow permeation by tracer gas. The time constant for

Duxseal exposed to helium has been determined as 20 minutes;

hence, a test should be terminated within that period of time.

A good discussion of fixtures for leak testing is given by

Smith in Reference 5-7. Every fixture has two sealing surfaces:

where it is sealed to the detector and where the component to

be tested is sealed to the fixture. Figure 5-6 is an example

of such a test fixture. The seal between the envelope and the

base plate does not have to be leak-tight.

Flexible gaskets made of elastomers and certain other mater-

ials should be used sparingly since they easily absorb helium.

During the first few minutes that helium is entering one side of

such a gasket, no helium leaves the other side. However, leakage

starts after a few minutes and quickly builds up to a steady value.

Because of permeability, the use of elastomers and similar ma-

terials is limited to the sealing of test setups for the measure-
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Figure 5-6. Reliable Test Fixture for Leakage Measurement

(Reprinted with permission from G.C. Smith,

ISA Journal, Vol. 10, November 1963, pp. 55-60;

copyright 1963, Instrument Society of America,

Pittsburgh, Pa. (Ref. 5-7).)

ment of leaks larger than 5 x l0 -_ atm-cc/sec unless special fix-

turing and pumping techniques are used at the seal. If, however,

rapid testing is essential and if long-term measurements are not

required, elastomers can be used when detecting leaks as small

as 1 x 10 -9 atm-cc/sec. (Details on permeation are given in
Section 6.2).

The size and type of leaks which must be detected are major

considerations in the design of fixtures. In the region i0 -_ atm-

cc/sec to 5 x 10 -7 atm-cc/sec, elastomers and flat gaskets are the

easiest and most practical to use. Common elastomers used in

O-ring configurations are made of viton or butyl rubber; flat gas-
kets are made of neoprene.

O-rings are mainly used for sealing between a base plate and

a test fixture. When sealing around a circular part, the fixture

must incorporate a means of holding the O-ring radially against

the part. One way to accomplish this is to use a retainer ring

in the fixture to hold the O-ring in place. Without the retainer,

the O-ring tends to spread or roll away.
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Sealing surfaces should be of good quality and have a 64 RMS
minimum finish. Shaft surfaces should not have longitudinal marks
or scratches. Tooling marks which are so oriented that they bridge
the sealing interface are harder to seal than marks which are per-
pendicular to the shortest leak paths. To reduce the problem of
sealing it is better to provide a good surface rather than to try
to fill a rough surface with vacuum grease.

Metal gaskets are often used for sealing in tests for leaks
smaller than 5 x i0 _ atm-cc/sec. These gaskets are usually made
of copper or aluminum and heat-treated to a dead soft condition.
Tests, lasting 24 hours, performed on these gaskets show their
permeability rate for helium is far below the above leakage rate.

The big disadvantage in using metal gaskets is in the large
forces required to assure sealing. Fixtures can be designed to
withstand these forces, but many components do not have the phy-
sical strength to resist them° Therefore the dimensions of a
component, and the mechanical properties of material used in it,
must be known when designing fixtures.

The surfaces which metal gaskets seal against must be of
much better quality than those used with elastomers. Surface
finishes of 16 RMSor better are required for repeatable sealing.

The split-type fixture makes possible the use of elastomers
and neoprene gaskets for leak testing in the realm of 5 × 10 -9

atm-cc/sec. Design of the fixture is such that any leakage of

tracer gas through seals will be to the atmosphere and will not

be sensed by the detector. Detector seals (Figure 5-7) between

the test piece and the detector base plate do not have to seal

against the tracer gas since they are not in contact with it.

Therefore any tracer gas entering the detector must come through

leaks in the test piece. This method is generally more practi-

cal than metal-to-metal seals, and it does not impose severe me-

chanical loads on the test piece to secure good sealing. The

shape of test pieces, however, sometimes prohibits its use.

Considerable test time can be saved by keeping the internal

volume of the fixture as small as possible, and avoiding materi-

als of construction which have high vapor pressures or high out-

gassing rates. This reduces the time required to evacuate the

fixture to the operating pressure of the detector. Additional

time can be saved by using a pump of ample capacity for evacu-
ating the fixture and component.

The time required to perform the actual leak test is largely

determined by the test specifications. Response time of a de-

tector to tracer gas leakage in small parts, such as are considered

here, is usually very rapid. The fixture designer should see that

nothing impedes the flow of tracer gas to the detector tube and

thereby adds to the testing time.

Fixtures should be small. This allows the use of a small

envelope containing the tracer gas, and a saving in cost of the
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Figure 5-7. Split Fixture for Parts Testing. (Reprinted

with permission from G.C. Smith, ISA Journal,
Vol. 10, 1963, p. 56, Instrument Society of

America, Pittsburgh, Pennsylvania., Copyright
1963.)

5-19



fixture, envelope, and tracer gas results. In addition to re-

quiring less storage space, small fixtures save time during evac-
uating and backfilling.

Before a finished fixture is released for use, it should be

thoroughly inspected visually, and leak-tested. Leak testing is

done by substituting a solid metal replica for the component

which will be used with the fixture. If any leaks are found,

they will be in the fixture, providing the sealing surfaces are

of good quality. If the fixture leaks, it can be repaired until

the leakage is much smaller than the maximum allowable leakage
for the component.

5.2.1.3 Weld Joint Testing. Testing of individual welds in

large systems is discussed in Reference 4-10. The test method

is illustrated schematically in Figure 5-8. A vacuum box which

temporarily covers the section of weld under test is evacuated

by a pump and also connected to the mass-spectrometer leak de-

tector. Helium is maintained near atmospheric pressure on the

opposite side of the weld under a cover of sheet polyethylene,
fastened at its edges to the steel plate by suitable adhesive

tape. If a leak is detected, it can be located by progressively
reducing the surface enclosed by the plastic cover. The leak is

finally isolated by means of a fine tracer probe.

/
k_qWELD BEINGTESTED_

| i
•.,..,.,,¢.:_..,.,.

H

TEST ENVELOPE

[oC:] o /
LEAK

DETECTOR

AUXILIARY PUMP

Figure 5-8.
Vacuum Box for Weld Testing (Reprinted with

permission from R.I. Garrod and J.F. Nanki-

vell, Vacuum, Vol. ii, No. 3, 1961, pp. 139-

145; copyright 1961, Pergamon Press, Inc.
(Ref. 4-10).)

The major design requirements for the vacuum boxes may be
summarized as follows:
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Working pressure in a box should not exceed 10 -I torr.

Attachment of a box to any welded section should be

an easy, reliable, and relatively rapid process.

Design should aim for a minimum number of different

box types and sizes to cover all types of weld.

The principal difficulty in meeting these requirements is

in making a satisfactory seal between the box and the section of

the system under test. The surface of the steel plate is usually

pitted, and generally has a poor finish compared with normal vacu-

um engineering standards. Furthermore, the welds often impose

a relatively abrupt change in contour on the seal where the two
ends of the box cross the weld.

The method adopted, which has proven satisfactory in opera-

tion, is illustrated schematically in Figure 5-9. The vacuum

box consists of a flexible metal plate, to which are cemented

two rectangular rubber gaskets. The gaskets are made from non-

interconnecting cellular rubber. This material provides suffi-

cient sponginess to effect a satisfactory seal with the steel

plate and across the weld, but at the same time is nonporous•
The section of the box inside the inner gasket is connected via

flexible neoprene hose to the leak detector, which also contains

the roughing pump for evacuating this volume. The annular space

between the two gaskets is connected to a second rotary pump.

By this means, leakage across the inner gasket is reduced suffi-

ciently to allow the inner volume of the box to be maintained

at a pressure, in most cases, of about 10 -2 torr. Air is admit-

ted to each section of the box, through driers and inlet valves

to release the box from the welded plate after a leak test. For

transportability and convenience in use, the rotary pump and the

air inlet system may be mounted on a trolley•

5.2•1.4 Testin_ Pipe und Fittings. The vacuum box can take

any convenient form that makes a reasonably tight seal to the

pipework. The box or shroud case consists of two brass half-
shells with silicone rubber seals molded to them• The offset

clamp can have an over-center lock with adjustable tension simi-

lar to a pair of "vice-grip" pliers (Ref. 5-8). Different sizes

and configurations would be needed for various fittings• Such

a fitting may be used to hold the tracer gas or as the detector

connector.

5.2.2 Leak Location

The location of leaks is usually accomplished by the detec-

tion of gas leakage• A hand-held probe is most frequently used

to search for leakage which is first detected by chemical or

other means• Where less sensitive detection methods can be tol-

erated it is possible to use audio or visual methods such as
ultrasonics or bubble formation.

Probing is performed with either a detector or a tracer type

probe• Certain precautions are necessary when using any probe.
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Too rapid a search may miss very small leaks. If this risk is to

be avoided, the speed at which the probe is moved must be in pro-

portion to the minimum leak tolerance. In testing equipment for

a leak specification of the order of i0 -s atm-cc/sec, the travel

can be one to two inches per second; but probe speed should be

reduced to one-half inch per second for smaller leaks.

If the tracer gas escapes into the room after the test has

been completed and the test piece opened, sufficient time must

be allowed to permit the amblent to again become free of tracer

gas. If the waiting period cannot be tolerated, there are two

alternatives that may be employed:

• The test piece can be removed to an outside area be-

fore the gas is permitted to escape.

• A vacuum system can be used to remove the gas before

opening the test piece.

The use of the vacuum system has proved the more satisfactory.

Although some gas usually remains in the test piece after evacu-

ation, and therefore tends to contaminate the alr, the time lost

in reestablishing tracer-free air is relatively small.

If large volumes are to be tested, it is possible to recom-

press the tracer gas for reuse.

The degree of mechanization employed in a testing setup is

dependent upon the production rate, the uniformity of test pieces,

and the total time available for hand work by the operator.

It is usually not possible to depend on natural dissipation

of escaping gas in a high-speed production test; it therefore be-

comes necessary to remove gas in the shortest possible time. The

design must include adequate vacuum lines to remove the gas from

the test piece after testlng; and proper forced ventilation must

be employed to clear the surrounding air. A hood has been found

suitable for this purpose.

When sufficient incoming airflow is used to clear away leak-

ing gas, steps must be taken to properly direct the air so that

it does not remove the gas at the point of the leak, before the

detector has had time to acquire a sample of tracer gas and in-

dicate the leak.

It is suggested that due consideration be given to the fol-

lowing points.

i. If the tracer gas is lighter than air, the system

should be probed from the upper parts of the test

object to the lower. In this way the tracer gas,

which rises, will flow back only over areas already

tested. Of course, the reverse is true if the tracer

gas is heavier than air.

2. For tracer probe testing of individual joints, time

may be saved by using a generous flow of tracer gas
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from a flexible rubber tubing (1/4 inch ID). When a

leak is indicated, its exact location can be determined

by means of a finer probe. On the other hand, with

large leaks in the system, enough tracer gas may en-

ter the system to saturate the leak detector for a

while. With many small leaks, diffusion of tracer gas

to these small leaks may make leak location difficult.

The use of a fine probe will narrowly limit the area

covered by tracer gas.

A very large leak will register on the detector, even

when the probe is some distance from it. The leak

should be located and repaired (permanently or tem-

porarily). Vacuum putty may be used for temporary

repairs.

When a point appears to leak but does not give a con-

sistent response, a large leak in some other location

is possible.

To distinguish between two possible points of leakage,

close to one another, one of them can be covered (with

tape, for example). A fine probe and a minimum flow

of tracer gas will help.

If a liquid tracer is to be employed, there is less

likelihood of blocking a leak if a pad of cotton is

moistened (but not saturated) with the liquid and used

rather than a liquid spray.

The probe should be moved over the test area at a

speed consistent with the time constant of the sys-

tem (see Section 4.5.2). When a detector probe is

used, response and cleanup time constants depend on

the length of tubing connecting the probe to the de-

tector. As the length of tubing is increased, both

response and cleanup time increase.

In detector probe testing, if large leaks are known

to be present, it is wasteful of search gas to use a

high pressure. Furthermore, the space outside the

test vessel in the neighborhood of a large leak will

become flooded with search gas, which will give con-

fusing results when adjacent areas are probed. It is

advisable, therefore, to pressurize the test vessel

cautiously, watching the pressure gage for an Indica-

tion of the presence of large leaks.

5.2.2.1 Design of Probes. The "sniffer", or detector pro•e,

can be a simple device when it is to be connected to a leak de-

tector with a pumping system, since the pumps provide the suction

necessary for drawing a gas sample through the sniffer into the

leak-detecting element. Figure 5-10 shows the Atlas-MAT "Schnuf-

felsonde" (Ref. 5-9) with a screw adjustment for controlling the

gas throughput.

The important points in this design are that a sleeve on the

end of the probe collects the gas which will travel to the detec-
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SCREW FOR

ADJUSTING

Figure 5-10. Detector Probe for Leak Location. (Reprinted

with permission from H.W. Drawin and K. Kro-

nenberger, Vakuum-Technik, Vol. 8, 1959, p.

128, Rudolf A. Long-Verlag, Wiesbaden, Ger-

many (Ref. 5-9).)

tor; and that the flow is controlled at the entrance to the probe,

i.e. there are no blind ducts at the entrance.

When tracer probe techniques are employed to locate the

exact position of small leaks in equipment having re-entrant

cavities, difficulties arise owing to the escape of search gas

from the area under test. Under extreme conditions the whole

region may become charged with search gas, which by its entry

through neighboring leaks makes localization almost impossible.

Fans which remove excess search gas from the region where the

test is conducted effect only a partial improvement, and their

installation is costly.

Pacey (Ref. 5-10) described a probe design which overcomes

this difficulty. It consists of two coaxial stainless-steel

tubes, search gas being supplied through the inner, and the ex-

cess being removed through the outer by means of a small vacuum

pump which is vented outside the test region. The flow of search

gas is adjusted to provide coverage of leaks without exceeding

the capacity of the extraction pump.

Standard hypodermic needles provide a ready source of suit-

able tubes. Size 0 is used for the outer, and size G for the

inner, both having Luer type fittings. The arrangement adopted

is shown in Figure 5-11. The outer needle is softened by heat-

ing in a small gas-air flame; when cool it is bent through an
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angle of about 30 degrees, after the removal of most of the fit-
ting to provide an attachment for the flexible tube leading to
the vacuum pump at D. A hole is made at the bend to allow inser-
tion of the inner tube. Concentricity at the probe end is brought
about by winding a five-turn helix, shown at B, of 0.25-millimeter-
diameter wire around the inner tube.

D

'_TRACER GAS OUT

Figure 5-11. Self-extracting Tracer Gas Probe.

(Reprinted with permission from

D.J. Pacey, Journal of Scientific

Instruments, Vol. 41, 1964, p. 398,

Institute of Physics and The Physi-

cal Society, London (Ref. 5-10).)

After the helix is sprung into place in the outer tube, the

inner is inserted through the hole already made and soft-soldered

in position, using a zinc chloride flux. This allows a fillet

of solder to form at C to provide adequate mechanical strength.

The probe is attached to a suitable tubular holder by a taper

engaging with the fitting of the smaller needle, through which
search gas is supplied.

If a leak closes at atmospheric pressure, and thus does not

exist under ordinary testing conditions, it is very difficult to

locate. A device (Ref. 5-11) has been developed to locate such

leaks by applying gas pressure to selected small portions of the

surface. By application of this device to successive small por-
tions of the system the leak is localized.

5.3 SYSTEM CLEANLINESS

The need for cleanliness of the system as a whole, including

the test object, cannot be overemphasized. The larger the sys-
tem the more important is cleanliness.

Tracer gas accumulation in surface dust and oil may cause
false but large leak signals. Excessive amounts of rubber -- for

example, gaskets and rubber tubing -- should not be used, since

they absorb tracer gas. When a large leak is encountered, appre-

ciable amounts of tracer gas are absorbed by the rubber and give
false leak indications on succeeding tests.

Lubricants and vacuum greases should be minimized, since

they, too, have an affinity for tracer gas. Good vacuum seals

are obtainable without the use of greases. Greases are dirt

catchers and, as such, will contaminate the vacuum system.
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Outgassing properties of leak detection systems are described
in numerous books on vacuum technology. A pressure rise in a
sealed vacuum indicates a leak, but so does outgassing. Pressure
rise caused by a leak will be a straight line when plotted against
time. Outgassing will graph differently because it gradually de-
creases with time. The practical aspects of this are dlscussed
in Section 11.4.

It is possible for a system to exhibit the symptoms of a leak
when it is in fact vacuum-tight. Virtual leakage, as it is called,
is often due to the presence of a condensable vapor in the system.
For example, if water vapor is present in a system equipped wlth
dry-ice traps, the system pressure will approach a limit of 10 .-3
torr, the vapor pressure of water at the temperature of solid
carbon dioxide. This is the simplest form of virtual leak. In
a liquid-nitrogen-cooled trap, the vapor pressure of water is
about i0 -Is torr, which is negligible by present-day standards.
If, however, some of the water vapor has been condensed as ice
just below the refrigerant level, then, as the liquid nitrogen
evaporates and its level falls, the temperature of this ice will
rise until it begins to sublime, producing a virtual leak. This
effect will not occur, of course, in a trap in which the refrlg-
erant level is automatically maintained.

In the presence of virtual leaks the system pressure is
raised to a particular value which tends to be constant. When
a virtual leak is indicated, volatile material may be present
in the vacuum system.

The use of a dry-gas bleed in vacuum systems and leak detec-
tors is a highly recommended procedure (Ref. 5-±2). The purpose
of the gas bleed is to create a laminar flow of gas through the
entire system during those periods when the equipment is not in
active use. This aids the outgassing of condensable materials,
such as water vapor, by preventlng readsorption. It also m_ni-
mizes the back-migration of both hydrocarbons from the mechani-
cal pump and condensables evaporating from the trap. In the case
of mass-spectrometer leak detectors, the background signal will
be lowered and maintenance reduced. A gas such as nltrogen is
generally employed.

When installing a dry-gas bleed system, the point of connec-
tion is chosen so that the gas flows from the cleanest parts of
the system, past any traps or baffles, and then through the vacu-
um pumps. In the case of the leak detector, locating the bleed

between the spectrometer tube and the inlet cold trap, and leav-

ing the inlet valve open to the manifold and its pump during the

bleed operation, permits gas flow toward both pumps. In this way

the inlet trap can be cleared of condensables without passing

them through the spectrometer tube. Gas flow is adjusted to main-

tain the vacuum system pressure between 0.2 and 0.5 torr. This

can best be accomplished by collapsing a piece of i/4-inch copper

tube until the vacuum pressure is in the proper range. A good

vacuum valve between the vacuum system and the restriction can
be used to turn the bleed off and on.
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When the gas bleed procedure is employed on a vacuum system,

the cold traps, if any, should not be maintained cold but allowed

to warm to room temperature. Diffusion pumps should be shut down

before the bleed gas is applied, leaving only the mechanical

pump(s) operating, since the required system pressure for effec-

tive bleeding is above their normal operating pressures.
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Area

Avogadro's number (number of molecules per mole)

Coefficient of discharge, dimensionless

Specific heat (Cp, c v, value at constant pressure
and constant volume respectively)

Diameter

Molecular diameter

Average velocity in flow channel

Fanning friction factor, dimensionless

Standard gravity

Constant

Permeation coefficient or permeability

Length

Molecular weight

Mass

Knudsen number, dimensionless

Reynolds number, dimensionless

Number of molecules per unit volume

Pressure (PI, P2, upstream and downstream pressure

respectively)

Average pressure

Pressure at throat of a nozzle or orifice

Pressure differential

Leakage rate, pressure-volume per unit time

Leakage rate, volume per unit time
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Permeation rate, volume per unit time

Radius

Gas-law constant

Critical pressure ratio

Absolute temperature
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Sonic velocity

Mass flow rate, weight per unit time

Function given by the argument of Equation 5-13

Specific heat ratio, Cp/C v

Viscosity (qa, n£, viscosity of gas and liquid
respectively[

Mean free path

Density

Surface tension

Contact angle, liquid to wall



Section 6

FLOWCHARACTERISTICS

6.1 GAS FLOW

Mass transfer due to gas leakage across a boundary proceeds

in one or more of three basic modes of flow. These modes of flow

are classified as

• Poiseuille, or laminar, flow

• Knudsen, or molecular, flow

• Transition flow, which is a mixture of laminar

and Knudsen flow

• Turbulent and choked flow

The rate of transport in each mode is a function of several fac-

tors associated with the leak channel and the gas involved. The

total pressure gradient is common to all modes of flow.

6.l.l Poiseuille Flow

Isothermal streamline motion in round tubes under conditions

such that the velocity distribution is parabolic with the maximum

velocity at the axis characterizes the laminar type of flow. At

sufficiently high values of velocity the motion becomes turbulent

and is characterized by the existence of eddies or vortices in the

flow channel. Turbulent flow is rarely encountered in leak-de-

tection work. Streamline or laminar-flow leakage rate through

a straight capillary of circular cross section can be calculated

from Equation 6-1:

(_I _ Pa ( )-- PI - P2 (6-i)
Q = _ n£

PI + P2
where P =

a 2

The equation is applicable where the length and diameter of the

flow passage are known. The equation may be rewritten as follows:

Q = K a i 2 (6-2)
n

where K represents the constants in Equation 6-1. The constant

K includes the two geometry factors of diameter and length, which

are generally not known. Thus,

=

Laminar flow occurs under conditions determined by the average

velocity of flow across a plane transverse to the leakage path,
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and by the density of the gas and its viscosity.* A dimension-
less ratio called the Reynolds number may be used to express
the conditions for laminar flow as well as other types of flow.
The Reynolds number is the ratio of the inertial to the viscous
forces in a flowing fluid. It is expressed as:

= 0 d F
NRe n (6-4 )

Substituting the value of the density in Equation 6-4, the
ideal gas equation gives the following expression for the Rey-
nolds number for an ideal gas:

Q 4M
NRe = _ z _ RoT (6-5)

The critical value of the Reynolds number defining the re-
gion between laminar and turbulent flow has been shown to be
dependent upon the entrance conditions, roughness of the walls,
and the shape of the flow path. In general, for smooth tubes
with well-rounded entrances, the critical value is about 1,200.
For flow corrections necessitated by turns, constrictions, and
surface roughness see Reference 6-1.

The two most important characteristics of laminar leaks
are: i) flow is proportional to the difference between the
squares of the pressures upstream and downstream of the leak;

and 2) leakage is inversely proportional to the leaking gas

viscosity. Table 6-1 shows that the viscosities of many gases

are similar. Therefore, a change of gas will not markedly in-
crease the sensitivity of the leak-detection method unless this

change of gas implies a change of instrument sensitivity.

However, as shown in Figure 6-1, increasing the pressure dif-
ference across the leak by a factor of a little more than three

will increase the flow rate through this leak by a factor of
ten. Obviously, then, when the leaks to be measured are in

the laminar flow range, the simplest method of increasing de-

tection sensitivity is to increase the pressure across the leak.

The average velocity
dividual molecules is m

*From kinetic theory the viscosity of a gas is:

mF
n =

3 /_d 2
m

RoT/_M ) z12 and the mass of the in-is (8
=

Thus,

2 (MRoT) z/2

3_; 2 _ d 2
m

This equation shows that the viscosity of a gas is independent

of pressure and is proportional to the square root of temper-
ature.
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Laminar Flow in a Typical Hardware Leak. (Re-

printed from J.W. Marr, Study of Dynamic and
Static Seals for Liquid Rocket En@znes, Final

Report Phase If, Contract NAS 7-102 (Ref.6-2).)
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Table 6-1

VISCOSITY OF GASES AT 0°C

(Ref. 6-1)

Gas Viscosity, Centi_oises

Acetylene 0.0092

Air 0.0169

Ammonia 0.0094

Argon 0.0208

Benzene 0.0069

Carbon dioxide 0.0135

Carbon disulfide 0.0089

Carbon monoxide 0.0171

Ethane 0.0085

Ethyl alcohol 0.0082

Ethylene 0.0093

Halogenated hydrocarbon F-If 0.0103

Halogenated hydrocarbon F-12 0.0118

Halogenated hydrocarbon F-21 0.0108

Halogenated hydrocarbon F-22 0.0120

Halogenated hydrocarbon F-If3 0.0098

Helium 0.0178

Hydrogen 0.0083

Hydrogen sulfide 0.0118

Methane 0.0100

Nitric oxide 0.0178

Nitrogen 0.0168

Nitrous oxide 0.0133

Oxygen 0.0191

Propane 0.0077

Sulfur dioxide 0.0116

water 0.0088

Xenon 0.0210

6.1.2 Knudsen or Molecular Flow

Molecular flow occurs in a duct when the mean free path is

greater than the largest dimension of a transverse section of

the duct (Ref. 6-1). In such flow, each atom moves independently
and randomly. Net flow is in the direction of a concentration

gradient.

The mean free path is the average distance that a molecule

travels between successive collisions with the other molecules

of an ensemble; it is given by the following equation:

1
= (6-6)

/2_nd 2
m
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If n = (mA)/(V × M)

becomes

and V = m/M [(RoT)/P] then Equation 6-6

l = RoT (6-7)

m

In Equation 6-7, the mean free path at constant pressure is

proportional to temperature. However, if the amount of gas in a

volume is kept constant, the mean free path is independent of

temperature (Equation 6-6).

The magnitude of molecular diameters and mean free paths

is shown in Table 6-2. As a convenient calculation guide, the

mean free path of air at room temperature is:

l = 5 × l_ 3 centimeters (6-8)
air P

when P is expressed in torr (about one millimeter of mercury).

Table 6-2

MEAN FREE PATHS AND MOLECULAR DIAMETERS

FOR VARIOUS MOLECULES (Ref. 2-3)

Mean Free Path Molecular Diameter

Molecule (cm × i_ _ at 1 torr and 25°C) (cm × 10 _)

Hydrogen 9.3 2.75

Helium 14.72 2.18

Neon 10.45 2.60

Argon 5.31 3.67

Oxygen 5.40 3.64

Carbon dioxide 3.34 4.65

Water 3.37 4.68

Benzene 1.34 7.65

Methane 4.15 4.19

Ethane 2.53 5.37

Propane 1.82 6.32

n-Butane 1.46 7.06

n-Pentane 1.19 7.82

n-Hexane 1.03 8.42

Knudsen or molecular flow exists when the expression

(I/d) (8/_) *a is greater than i. The flow rate in long cir-
cular tubes under these conditions can be calculated from:

/_ _-_ d 3Q - 6 _-- (Pl - P2) (6-9)
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In the case of an orifice or aperture in a flat plate the flow

rate in torr-liters per second is:

_d2 IT1 _2Q = 3. 638 -T- M AP (6-10)

These flow-rate equations include the terms of length and
diameter of the flow channel. In most cases the leak channel

is irregularly shaped and the values of length and diameter are

not known. Using these equations, an estimate of leak size must

be made to calculate leakage. Again, when experimental data on

leakage rate are available a value of the ratio (d3/£) or of d 2

may be obtained if the other constants and conditions are known.

Thus the equations can be used to evaluate effects on mass flow

rate of other gases and other temperatures and pressures.

When the mean free path is large relative to the size of the

effective leak diameter, the gas flow is limited by molecular

collisions with the channel wall. There are comparatively few

intermolecular collisions (the molecules act independently of

each other), and the molecular momentum interchange with the

wall causes molecules to travel in a direction opposite to that

of the net mass flow. For example, when an ultra-high-vacuum

system at 10 -9 torr is leak-tested by a mass-spectrometer leak

detector operating at I0 -? torr, some of the tracer gas will

arrive at the leak detector because of migration in a direction

opposite to the concentration gradient.

6.1.3 Transition Flow

where

The transition from laminar flow to molecular flow occurs

over a pressure range of about two orders of magnitude, rather

than at any set pressure value (see Section 6.4,"Correlation

of Leakage Rates"). Transition flow can be described by an

empirical equation formulated by Knudsen (Ref. 2-3):

Z

i+2Rf lj2
_-- _Ro_ Pa

1 + 2"47RI
 RoT)Pa

(6-11)

(6-12)

Equation 6-11 is useful over a wide range of pressures for flow

in long cylindrical tubes where the flow is laminar, molecular,
or transitional.

Another empirical equation suitable for estimating purposes

was derived by Burrows (Ref. 6-3) by assuming that the total flow

rate can be represented by the sum of the laminar and molecular

flows (Equations 6-1 plus 6-9). The following equation was ob-

tained in this way for the flow of air at 20°C from atmospheric
pressure to a high vacuum (zero pressure):
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where
meters.

Q = 2 31 x i0_ R3 [ ]. -_ 3.55 x i0 _ R + 3.18 (6-13)

Q is in torr-liters per second, with R and £ in centi-

This equation is an adequate representation of the events
occurring in the leak. Both laminar and molecular flow always
occur together in a leak. However, laminar flow is insignifi-
cant at small values of R and the molecular flow mode contrib-
utes little to total flow at large values of R.

A simple graphical solution is described in Section 6.4.2
to calculate laminar flow through one section of a tube and
molecular flow through another to approximate the behavior in
the transition region.

6.1.4 Turbulent Flow

As mentioned, above a Reynolds number of about 2100 in the

case of circular pipe, flow becomes unstable, resulting in the

development of innumerable eddies or vortices. The laws for

turbulent flow are quite different from the laws for laminar

flow. The equation relating flow rate (Q)

times volume/time may be written:

gRoT(Pl _ - P2

L 64 fM£
Q

in units of pressure

2)11_ (6-14)

where f, the fanning friction factor, is a function of the Rey-

nolds number and depends on the roughness of the channel walls.

The Reynolds number can be considered approximately constant

in fully developed turbulent flow. Turbulent flow, because of

its associated high velocity, occurs only in large leaks.

6.1.5 Choked Flow

Choked flow, or sonic flow, as it is sometimes called,

occurs under special conditions of pressure. Assume a passage
in the form of an orifice or a nozzle, and assume that the pres-

sure upstream is kept constant. If the pressure downstream is

gradually lowered, the fluid velocity through the throat of the
orifice or nozzle will increase until it reaches the speed of

sound in the fluid. If the downstream pressure is brought below

this pressure, no further increase in fluid velocity will occur,
and the mass flow rate will have reached a maximum or critical

level. This is the condition known as choked, or sonic, flow.

The ratio of the throat pressure to the upstream pressure when

maximum flow occurs is called the critical pressure ratio (rc) ;

this is related to y by the following equation:

re = y+-_[] (6-15)
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The maximum, or sonic, velocity for an ideal gas is given by

V a = _Yg RoT (6-16)

Based on knowledge of only upstream conditions of temperature

and pressure, the maximum mass discharge under critical flow
conditions is calculated as

W = ----4-- CoPI__,,.o._ 1 (6-17)

For an ideal monatomic gas, the value of 7 is 1.67. For poly-
atomic molecules, the heat energy supplied is used for increas-

ing not only the kinetic energy of translation but also the

kinetic energy of rotation and vibration. Since the same amount

of extra energy is required at both constant pressure and con-

stant volume, y decreases with molecular complexity. Charac-

teristic values of 7 are shown in Table 6-3. Additional values

may be calculated (Ref. 6-4) or obtained from other references
(Ref. 6-5).

Table 6-3

MOLAR HEAT CAPACITY OF GASES

Calories per Mole at 25°C and 1 Atm

C C Cp/Cv- YGas __2__ v _

Argon 4.97 2.98 1.67

Helium 4.97 2.98 1.67

Hydrogen 6.90 4.91 1.41

Oxygen 7.05 5.05 1.40

Nitrogen 6.94 4.95 1.40

Carbon dioxide 8.96 6.92 1.29

Ammonia 8.63 6.57 1.31

Ethane 12.71 10.65 1.19

Propane 17.60 15.60 1.13

Because of the special conditions, choked flow is seldom

encountered as the predominant flow mode, except in very large
leaks.

6.1.6 Distinguishing Between Modes of Flow

Equations have been presented for the various possible

modes of flow that can prevail in a leak. The following sum-

mary indicates the manner in which it is possible to determine

the mode of flow in any situation.
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The dimensionless ratio of mean free path to a character-
istic lateral dimension of the flow channel is known as the Knud-
sen number :

NK = I/d (6-18)

Laminar flow exists for values of NK < 0.01 and molecular flow
exists for values of NK > 1.0. The region of transition from
one mode to the other lies between values of 0.01 and 1.0.

The Reynolds number (Equation 6-4) can be used to distin-
guish between turbulent and laminar flow. Turbulent flow exists
at values of NRe > 2100; laminar flow exists for values of
NRe < 1200. For values of 1200 < NRe < 2100 the flow mode can
be either turbulent or laminar, depending upon the channel rough-
ness.

As a rule of thumb, it is possible to predict the mode of
flow through a leak channel from a knowledge of the rate at which
a gas passes through the leak under a differential pressure in
the order of one atmosphere (Refs. 5-4, 6-3, 6-6, and 6-7).

Leakage Rate
Mode (atm-cc/sec)

Turbulent > 10-2

Laminar 10 -I to 10 -6

Transition 10 -_ to 10 -7

Molecular < 10-_

6.2 PERMEATION

Permeation is the passage of a fluid into, through, and out

of a solid barrier having no holes large enough to permit more

than a small fraction of the molecules to pass through any one

hole. The process involves adsorption, diffusion, dissociation,

solution, migration, and desorption.

The rate of flow by permeation is given by the following

equation:

q = Kp A _--_P£ (6-19)

The AP in this case represents the difference in the partial

pressures of the leaking fluid on the two sides of the barrier.

The permeability coefficient, Kp, is defined as the product
of the diffusion coefficient and the solubility coefficient of

the permeating fluid in the barrier material. In a porous ma-
terial in which the ratio of the volume of an average pore to

the surface area of the pore is large, fluid transport from

pore to pore is governed largely by diffusion processes.
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Values of the permeability coefficient for a few polymeric
and ceramic materials are shown in Table 6-4. The literature

reference (Ref. 6-8) should be consulted for permeability values

at other temperatures, or with other materials, or for differ-

ent permeants.

If any system is to be relatively leak-tight, the materials

of construction must have a very low permeability. For example,

the permeation rate at room temperature of a natural rubber gas-
ket 0.i inch thick, 0.I inch wide, and 5 inches in diameter with

a one-atmosphere hydrogen pressure differential is 6 × 10 -6 atm-

cc/sec. In some uses, this permeation might represent an unac-

ceptable leakage rate.

Permeation presents a problem to leakage checking equipment

where the construction materials have a high permeability to

the tracer gas. If a component containing a rubber diaphragm

one millimeter thick and one square inch in surface area is

leak-checked with helium gas, a leakage of approximately 2 × i0 -s

atm-cc/sec will be measured across the diaphragm. This leakage

is due to permeation of helium through the diaphragm; not to

any actual holes. It represents the maximum sensitivity of

helium leakage testing that can be performed on this component.

However, if the component is to be used with another fluid,

to which the membrane is impermeable, the leakage due to helium

permeation measured during leakage testing is misleading.

Another example of this type of false reading is that ob-

tained from a rubber O-ring. Depending on the particular mate-

rial being tested, an O-ring will have a permeability of approxi-

mately 10 -_ atm-cc/sec-atm per linear inch of exposed surface.

Figure 6-2 illustrates the permeation rates of O-rings to helium;

it also shows the time lag which depends upon the diffusion con-

stant (Ref. 6-9). This permeability does not have to be taken

into consideration during routine leakage checking if the leakage

measurement can be performed before helium saturates the O-ring.

To eliminate permeability as a factor in leakage measure-

ment, one of three possible procedures may be used.

i. The leakage measurement may be taken rapidly, not

allowing the material to be saturated with gas. This

is only possible if the material is relatively thick.

For example, a very thin rubber diaphragm will rapidly

saturate and almost immediate show leakage. On the

other hand, O-rings are relatively thick and will nou

saturate rapidly enough to give a reading within a rea-
sonable period of time (five minutes). If the diffu-

sivity and solubility of the fluid in the material are

known, it is possible to calculate the rate of increase

of leakage (Ref. 6-10). However, in many cases (where

the leakage path is long) this calculation is not neces-

sary. An experimental check can be made to determine

very quickly if leakage through a thick gasket is incon-

sequential for short-time periods.
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Table 6-4

PERMEABILITY OF POLYMERICMATERIALS TO VARIOUS GASES (Ref. 6-8)

std cc cm × 108 (Note: 1 bar = 10_ dynes per sq cm)
sq cm sec bar

Carbon

Dioxide Helium Hydroqen Nitrogen Oxygen
Type or Trade Name

Suna S 92.8 17.3 30.i 4.7 12.8

Butad lene-acryloni tr ite

copolymer

Cellulose acetate

Cellulose acetate butyrate

Cellulose nitrate

Ethyl cellulose

Hydropol

Mlpolam MP

Neoprene G

MEM-II3 Polycarbonate*

Nylon 6

Polybutadlene

polychlorotrlfluoroethyle,e

Perbunan 18 12.7 18.9 1.89 G.12

German _rbunan 9.20 11.3 0.84 3.0

Hycar - OR - 15 5.13 5.35 0.178 0.72

Hycar - OR - 25 7.40 8.05 0.45 1.76

Celanese P-912 6.6 0.01

Kodapak II lO. 8 15.8 1.1 2.8

5.1 1.48

Etbo¢el 810

KeI-F

TritheRe

Alathon 14

Polyethylene terephthalate

Mylax A

polypropylene (0,907 g/_ J

Polystyrene
Dow 0641

polyv_nyl chlorlde-dloctyl phthalate
IOI°EF-100

31.6 22.4 5.5 17.9

36.3 11.0 3.0 8.5

3.85 4.3 0.2 0.69

19,2 3.30 10.2 0.88 3.0

713. 90. 150. 75. 128.

0.92 0.0063 0.023

103.9 31.6 4.05 14.3

0.73 0.0025 0.02

25.5/30C 0.73 0.0079/23C

_._ 3.7 5.88 0.73 1.65

0.00| 0.73 0.44 0.0031 0.019

0.33/30C 2.72/30c

5.63/20C G7.6 5.0 18.3

0.765/30C 2,0/30c

Propane Water

2.0/31c

0.0057

40.5

900.

4740.

9750

750.

53

0.22/30c

97.8

36.8

Polyv_nyl_dene chloride

Saran S17

_uDbec. butyl

OppanoI-B-200

Rubber, hydrochloc_de
Rliofllm 140-N2

Pllofllm FMI

Rubber, methyl

Rubber, natural

Rubber, polysulflde

Rubber, dimethyl silicone

Teflon

GLa_s

Thiokol B

FEP

TFE

0.024 0.01 0.05

4.8 0.22

0.0018

0.89

0.48 1.20

0.70 0.109 0.40

0.3 10.9 12.0 0.36 1.6

105. 25.0 38.3 7.4 17.5

2.37 1.2 0.22

2030. 263 • 495. 210. 450.

7.51 30.1 9.88 1.44 3.37

523. 17.0 2.4 7.5

FUSed silica 0.75 0.00011

Vy¢or 1.13 0.00030

Pyrex 0.0_

Soda llme 0.00056

X-ray shield 0.000 000 31

0,480

0.00027

126. ,

3080

7.4

2570

28500.

'Information furnished by the Medical Development Operatlon of the General E1ectrlc COmpany's
Chemical and Medical Division.
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Figure 6-2. Permeation Rate Versus Time of Rubber Gasket

for a 4 × 4 mm Cross Section. (Reprinted

with permission from I. Kobayeshi and H. Yada,
"Leak Test of Rubber Gaskets," Fundamental

Problems in Vacuum Techniques, Vol. I, Per-

gamon Press, London, 1960, p.248 (Ref. 6-9).)

.

.

The maximum permeability of all components and the re-

sulting mass transfer produced during leakage testing
may be calculated by Equation 6-19. Then the differ-

ence between the total measured leakage and the per-

meation will be the actual gas leakage.

The last method and the most difficult one to perform,

is to quantitatively measure the leakage at several

pressure differentials. If the flow is solely due to

permeation the leakage will be directly proportional

to the difference in permeant concentration across the

leak. A flow through a hole or a porous barrier will

exhibit a leakage that is proportional to the differ-

ence in the squares of the pressures on each side of

the barrier under laminar conditions. In this way,
the presence of holes in the component can be differ-
entiated from permeation.
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6.3 LIQUID FLOW

The flow mode of a liquid through a leak or capillary chan-

nel at low flow rates will be laminar; at high flow rates the

flow mode will be turbulent. The value of the dimensionless

Reynolds number for the liquid is again the criterion for deter-

mining which mode prevails (see Section 6.1.1).

6.3.1 Laminar Flow

6.3.2

Poiseuille's equation for laminar liquid leakage flow is

QV = • Iz) nZ

Turbulent Flow

The turbulent flow equation for liquids is

sh , / (P1 - P2)g
Qv _- d V (6-21)= 2pf£

Turbulent flow occurs only in very large liquid leaks.

6.4 CORRELATION OF LEAKAGE RATES

It is often of interest to find the leakage rate of a gas

or liquid through a given leak channel when the leakage rate for

a particular gas through that channel is known from a previous
measurement. Under certain conditions it is possible to cor-

relate leakage values between different gases and between a gas

and a liquid without a knowledge of the actual dimensions of
the leak channel. Variations in the leakage rate with molecular

weight, temperature, and pressure may also be calculated as long
as the mode of flow remains the same. It does not appear pos-

sible to predict a leakage rate if the mode of flow changes or

if, more specifically, a knowledge of the geometry of the leak-

age path must be known (Ref. 6-11).

6.4.1 Gas-to-gas Flow Correlation

If the flow is laminar, Equation 6-2 may be used to calcu-

late a new flow rate relative to a known flow rate for two gases

having different viscosities, or for different levels of inlet

and outlet pressure for the same or two different gases. The

geometrical factor K is common to the equations for the known
and calculated flow rates. For the same levels of pressure,

the flow rates for two gases of different viscosity are related:

QA nB

QB nA

(6-22)
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In general,

QA _ nB 2 _ P2 (6-23)
QB _ - P_

where (P:, P_) and (P3, P_) are two pairs of inlet and outlet

pressures. The subscripts A and B represent two different gases.

if a single gas is involved, the viscosity ratio is unity in

Equation 6-23. A change in flow due to a difference in tempera-

ture is accounted for by the effect of temperature on viscosity.

The footnote in Section 6.1.1 indicates that the viscosity of a

gas varies as the square root of temperature. As shown in Table

6-1, the viscosity of gases at constant temperature varies by
less than half an order of magnitude between the most viscous
and the least vzscous.

If the flow is molecular, and the leakage path is long com-

pared to the length of its effective diameter, Equation 6-9 can

be used to generate a similar proportionality:

QB x × 3" p_ (6-24)

It is assumed in going from one set of pressures to the

other that the flow mode remains unchanged in both laminar and
molecular flow.

When there is reason to believe that the flow will change

in going to a different level of pressure the following pro-
cedure is recommended:

• If pressure is increased, correlate as laminar.

• If pressure is decreased, correlate as molecular.

• If gas is changed, correlate as molecular.

6.4.2 Gas-_o-llquid Correlation

It is possible to predict liquid leakage on the basis of

leakage measured under other known conditions. This method is

generally applzcable to a leak or series of leaks which have a

conductance between 1 and i0 -s atm-cc/sec-atm.

An equation which relates the laminar flow of a gas to the

laminar flow of a liquid through the same leak is readily 9b-

tained by dzviding Equation 6-1 by Equation 6-20. The equation
is independent of the geometry of the leak and is

n£ Pa

Solution of this equation is easily accomplished by use of the

nomograph in Figure 6-3. One line connects the viscosity axes

with a reference axis (I). A second line connecting the average
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pressure axis with axis (I) locates a point on axis (II). Third-

ly, a line connecting the point on axis (II) with the gas leakage

value also intersects the liquid leakage axis at a value which

is the solution to Equation 6-25.

This correlation proceduze is accurate only for laminar

flow leaks. Should the measured leakage be molecular rather

than laminar, the error introduced in the calculation will pre-

dict a greater liquid leakage than will actually be found. The

equation may therefore be used with confidence, since any error

will add a margzn of safety to the results.

It is also necessary that:

• Leakage be the result of a finite hole or holes, and

not of permeation_

• Gas flow be laminar; i.e. the flow through the leak

is in the range of 1 to 10 -3 atm-cc/sec or is made

up of a number of leaks in that flow range.

• Calculatzons should at best be considered accurate

to only a factor of two. Error in both the measure-

ments and the deviat±ons from the flow equations pre-
clude a more accurate solution.

In experiments performed to check the validity of the above

correlation (Ref. 6-12) liquid leakage was measured for leaks

with previously measured gas leakage rates. It was found that

leaks having a gas conductance in the 10 -3 atm-cc/sec range had

a liquid leakage approximately one-half that predicted by Equa-

tion 6-25. Leaks in the 10-" atm-cc/sec range leaked liquid at

a rate approximately one-tenth the rate predicted. Liquid leak-

age in leaks in the i0 -_ atm-cc/sec-atm range were approximately

one-twentieth of that predicted by the above equations.

It would appear that Equatlon 6-25 for correlation will

produce conservative answers; i.e. the actual liquid leakage

will always be smaller than that predicted by theory. It is

believed that the liquld flow was lower than calculated for

two reasons. Fizst, no correction was made for any molecular

flow component of the measured gas leakage. Secondly, the ef-

fective diameter of the leak channel was reduced in size by an

immobile layer of liquid adjacent to the leak wall.

6.5 ANOMALOUS LEAKS

Some leaks which occur in practice exhiblt a flow behavior

quite unlike that of an ideal smooth-bore capillary. Such leaks

are called anomalous leaks, and include check-valve leaks, geo-

metry-change leaks, self-cleaning leaks, and surface-flow leaks.

6.5.1 Check-valve Leaks

Reference 6-2 contazns examples of check-valve and geometry-

change leaks found during a study of leakage phenomena.
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Figure 6-4 is a plot of the leakage-pressure differential
obtained on a damaged needle valve. It was observed that al-
though the typical laminar flow curve was obtained at a high
pressure differential, below this pressure the leakage abruptly
stopped. With increase of the pressure, the leak reappeared.
This phenomenon was repeatable.

This type of leak would be particularly hard to find, since
it would not be detected below a critical pressure value.

6.5.2 Geometry Changes in Leaks

The shape of a leak may change with variations in tempera-

ture or pressure. Either a liquid or a gas under pressure can

cause a change in leak size.

Change of leak size will affect a prediction of flow based

on either Equation 6-23 or Equation 6-24. Each of these equa-

tions has been derived on the basis that the geometry factor re-

mains invariant with changes in the other variables. Each of

the equations correlates a new flow and a new pressure differ-

ential with an old flow and an old pressure differential. If

the new pressure differential is higher than the old, the leak

size may be caused to increase. If so, the actual leakage will

be greater than that predicted by the correlation calculation.

The influence of temperature on leak size is somewhat unpre-

dictable. For example, either an increase or a decrease in

temperature can open up a leakage path, depending upon the stress
distribution in the material near the leak wall.

6.5.3 Sel f-cleanin 9 Leaks

Quantitative determination of the leakage of helium across

gaskets under compression was observed to consist of a series

of discrete laminar flow steps (Ref. 6-2). Figure 6-5 shows

the data plotted in logarithmic form along with theoretical
laminar flow lines.

Since the step-like increases in flow rate could result

from a permanent deformation of the gasket, an experiment was

run using an aluminum gasket too sturdy to be deformed. Figure

6-6 shows the data obtained from this experiment. During the

original increase in pressure, the leakage increased at a rate

greater than the square of the pressure increase. However, upon

release of the pressure, the leakage decrease was proportional

to the square of the pressure decrease. A second increase in

pressure produced an increase which retraced the leakage en-

countered during the pressure decrease.

It is believed that the original pressure increase cleaned

the leakage passages. Further pressure cycling did not effect

the maximum leakage. This suggests that whenever possible leak-

age testing should be done at the proposed operating pressure, in

order that potential leaks may be formed and observed.
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printed from J.W. Marr, Study of Dynamic and
Static Seals for Liquid Rocket En@_nes, Final

Report Phase II, Contract NAS 7-102 (Ref.6-2).)
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6.5.4 Surface Flow Leaks

The flow of gases and noncondensing vapors through fine

capillaries and micropores cannot be dealt with by simple meth-

ods analogous to those applicable to molecular and laminar flow.

Because of the narrow passages and large surface areas involved,

surface adsorption and surface flow become important factors.

The adsorption may be physical where only relatively weak van
der Waals attractions are involved; or the adsorption may be re-

garded as chemical where the surface of the solid provides bind-

ing sites for the atoms, and the electronic structure of the

solid permits the formation of a chemisorption bond. The nature

of the binding sites, the bonds between the gas atoms, and the

surface influence the degree of surface migration of the atoms.

The flow along a fine capillary or micropore is assumed to

consist of two mechanisms worklng simultaneously:

I. Molecular flow along the bore of the capillary,

whereby molecules are supposed to collide with the

wall, rebound, and collide with the wall again

without intermolecular collisions.

2. Surface flow along the wall of the capillary, whereby

molecules are adsorbed and diffuse along the surface

of the wall.

Both of these mechanisms promote gas flow from regions of higher

gas concentrations to regions of lower gas concentrations.

For a given set of conditions, the proportion of molecules

that follow the above mechanisms depends on a variety of factors.

These factors include:

• Sticking probability (the probability that a

molecule striking the surface will become adsorbed)

• Length of time the molecule remains adsorbed (the

mean surface lifetime of the molecules)

• Coefficient of surface diffusion of the molecules

Such features are, in turn, influenced by other characteristics --

the number of sites occupied by the adsorbed molecules and wheth-

er a complete monolayer has been formed.

The nearer the properties of a gas approach those of a con-

densable vapor the greater the proportion of surface flow. There-

fore, a reduction of temperature or an increase of pressure may

sometimes promote a total flow in excess of that predicted by

the laminar theory.

Although the final leak rate achieved with a condensable

gas will be higher than predicted from flow theory, Hayashi
(Ref. 6-13) showed that there will be an initial delay of flow

due to condensation of the tracer gas on the leak surfaces.

Consideration of this delay is important if a tracer probe tech-

nique is used for testing. For example, if butane, a readily
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condensable gas, is used in a tracer probe, some small leaks will
be missed because of the time delay caused by the adsorption.
Two remedies can be suggested to counter this problem:

i. Use of a noncondensable gas

2. Use of a detector probe where the gas is continually

in contact with the leak and an equilibrium flow rate
is established

6.6 LEAK CLOGGING

6.6.1 Surface Tension Effects

Very small holes that may give rise to appreciable leakage

rates of gas under high vacuum conditions are sometimes partially

or wholly blocked by solid particles having sizes in the micron

range, or by liquids as a result of surface tension effects.

The blockage may be of a temporary nature, and so give rise to

misleading test results.

Until leakage testing has been performed, the system should

be kept out of contact with atmospheric or other vapors and par-

ticulates that may cause blockage. However, this condition can-

not always be met in practice. It is frequently observed that

if a container to be tested for leaks has been in contact with

a liquid at any time after manufacture, no leaks of small size

(i.e., I0 -_ atm-cc/sec or smaller) will be found. Small leaks

are clogged with liquid because of surface tension. If water

has entered a capillary tube, the pressure necessary to force it

out of the tube is given by the following equation:

p = 40 cos_
d (6-26)

A leak with a diameter of 1 × i0 -_ centimeters will have a leak-

age rate for helium of approximately 1 × 10 -6 atm-cc/sec. If

water, with a surface tension of 72 dynes per centimeter, enters

such a leak, the pressure required to force it out is approxi-

mately 2.8 atmospheres (cos _=i). Since the pressure differen-

tial during leakage testing is only one atmosphere, this leak

is essentially clogged by the water. Clogging is more likely

to take place under actual conditions than in the above example.

Most leaks are neither circular nor regular in diameter; they

usually contain constrictions and occasionally consist of slits.

Figure 6-7 shows an example of surface-tension clogging by

a slug of liquid in the leak path. The cross section of the

leak channel increases to the right. Gas pressure from the left

has forced all liquid out of the leak but that in the slug.

With no change in cross section, the adhesive forces acting at

the liquid-wall interface would be equal and opposite in direc-

tion, and surface tension would not affect the ability of the

applied pressure, P, to force the liquid out of the hole. How-

ever, the increase in cross section on the right reduces the
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Channel

force of surface tension directed

to the right, so that the liquid

resists any attempt to force it

out. In some cases, pressures of

many atmospheres are required to

free a leak path of a liquid slug.

This type of clogging effect will

be greatest at the exit of a leak

path, and the eventual removal of

the slug may depend mainly on

evaporation.

Conversely, if the gas pres-

sure forces the slug to the left,

the net surface-tension force will

aid such flow, and the slug will

pass all the more easily into the

smaller cross-sectional region.

If the cross section again increas-

es on the left, the slug will re-
main locked in the constriction

until it is removed by other means.

If the liquid does not wet the wall, the curvature of the

meniscus on each side of the s--_ug is reversed, and the slug will

be easily forced toward the larger cross section, but not as

easily toward the smaller cross section.

Liquid clogging is not generally permanent in nature. If

the temperature of the container is raised, the surface tension

of the liquid will decrease or the liquid inside the leak will

evaporate. However, if the entering vapor c_ntains a dissolved

salt, solid particles will remain after evaporation and cause

permanent blockage.

Gas leakage much smaller than 10 -8 atm-cc/sec is rarely

seen, even though it is in the range of detectability. Such

small leaks are found on new systems which have never been in

contact with liquid. These leaks have to be carefully treated

or they will clog during normal handling. It may be calculated
that a leak 10 -8 atm-cc/sec has a diameter in the order of i0 -s

centimeters. To place this number in dimensions of atomic size,

its diameter is about 1,000 Angstrom units.* Molecules of liquid

contaminants (for example, either hand or machine oil) are in

the order of 100 Angstroms in length. Should these molecules

be held by surface tension, they could reduce the size of the

hole and therefore reduce the leakage rate to a point of clog-

ging. Molecular flow, which should predominate in this range,

is proportional to the cube of the leak diameter. Therefore, a

small decrease in leak diameter will produce a drastic decrease
in gas leakage.

*One centimeter = 108Angstrom units.
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6.6.2 Vapor Pressure, Viscosit X, and Particulate Effects

A pressurizing test may suffer some restriction in its ap-
plication to certain types of vacuum equipment, because the de-

sign may permit the use of only small overpressures. In these

applications the presence of water may easily block a leakage

path owing to its high surface tension. For example, when a

particular capillary has absorbed water that wets its wall, this

capillary can become completely blocked against a gas pressure

difference of 1-1/2 atmospheres. A thin mineral oil in the cap-

illary has a lower surface tension and would be more easily

moved, requiring only about one-half atmosphere. Even though
the applied pressure difference may be sufficient to move the

oil, the viscosity of oils is relatively high. Therefore, in

practice, the oil will usually permanently block a capillary of

any appreciable length. This is due to the extremely slow rate

of flow of oil. Oil is also difficult to remove thermally, and

a deposit is generally left in any leak pore. Consequently, oil

should not be used for pressure testing before leakage testing
with a tracer gas.

Water will evaporate much more readily at reduced pressures

than will a mineral oil, because of its higher vapor pressure.

The rate of evaporation is accelerated if the temperature is

raised. For leakage testing of evacuated systems, a number of
points should be considered.

• A preliminary water-pressure test is permissible,
but not recommended.

• Oil should never be used for overpressure test.

• A compressed-air test should never follow a water-

pressure test before vacuum testing for leaks. This

is because the residual water that is held in small

capillaries maybe forced back by the compressed air

into larger voids. Under vacuum conditions, the

liquid would evaporate slowly through the capillary
restriction.

• Even a preliminary water-pressure test is inadvisable

for an ultrahigh-vacuum system. In such a system de-

tection of very small leaks through fine capillaries

becomes essential and the time required to ensure

clearance of such capillaries (by evaporation of the

residual water) may be unduly prolonged.

To summarize, when a liquid is in a capillary, the liquid

that has the lower surface tension is more readily moved by a

gas-pressure difference, while a liquid that has a higher vapor

pressure is more readily evaporated. As a consequence, capil-
laries that may be blocked by water under the conditions of an

overpressure test may often be cleared by evaporation of the

water into a vacuum. Moreover, apparatus which must undergo a
rigorous check for leaks must be dried in a vacuum because

small leaks are readily closed by the water adsorbed on the
walls.
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Following the general rule, it is preferable that the ves-
sel or component to be tested should be kept out of contact with
sources that may cause blockage, until after leakage testing
and leak repair have been completed. Components should be kept
in a dry box to prevent absorption of water vapor from the at-
mosphere.

Solid particles in the millimeter size range are not, in
general, a source of trouble. But solid particles in the mi-
cron range may enter and temporarily block a capillary. They
may subsequently be displaced, giving rise to an intermittent
leak that is difficult to establish and locate. Blockage by
solid particles may occur, for example, if the fluid used in con-
nection with magnetlc crack-detection work is applied before
testing for leaks. Magnetic fluld contains iron particles, of
which the greater proportion are usually in the 2 i/2-to-10-mi-
cron size range and are, therefore, comparable with the cross-
sectional dimensions of small leaks.

One of the disadvantages of porosity will be understood by
considering the effect of a hypothetical condition of a thousand
capillaries, one-fourth inch long, situated close together in
parallel, each having a radius of i0 -s centimeter. The total
leakage rate through this assembly would be approximately 1.3 x
10 -_ torr liters per second -- that is, about the same order of
leakage as a single capillary of 10-2 centimeter radius. How-
ever, if water has access to the porous assembly, the pressure
difference required to remove it from the capillaries would be
(from Equation 6-26) 14 atmospheres, or 210 pounds per square
inch. This is ten times the pressure difference needed to re-
move such blockage from a capillary of i0 -_ centimeter radius.

Small holes in mild steel vessels or components may become

permanently blocked by "rusting up" caused by moisture. In

practice it is usually impossible to prevent atmospheric mois-

ture from entering capillaries. Most metals are attacked to

some extent by water in the presence of air; such an action

gives rise to an oxide film that has a greater specific volume

than the metal. This effect applies particularly to mild steel,

where the oxide film has a specific volume about seven times

greater than that of the parent metal. Consequently, the smal-

ler capillaries, which have the greater tendency to retain water,

readily rust up. Stainless steel is less likely to be affected

in this way.

When a liquid blocks a capillary its removal from the capil-

lary may be influenced by such factors as:

• Wetting combined with surface tension, which resists
motion

• Viscosity, which controls the tendency to flow

• Vapor pressure, which controls the tendency to evap-

orate.
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In addition, there are situations where factors such as soluble

contaminants, polarization in the liquid, ionic solutions of the

wall material, electrokinetic forces, and temperature can affect

the leak rate. Reference 6-3 is an excellent article dealing

with the flow of liquids and the effect of evaporation on fine
capillary tubes.

Under certain special conditions it is possible for large

leaks to become plugged. The expansion of liquids from below

their triple-point pressures will result in freezing of the liq-

uid to a solid. The buildup of a solid can temporarily plug

leaks (Refs. 6-14, 6-15, and 6-16), and it is possible that such

leaks might not be detected in the course of testing for leakage.
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Secti on 7

SOME GUIDELINES FOR WRITING SPECIFICATIONS

7.1 INTRODUCTION

This section discusses factors to be considered in specify-

ing a maximum allowable leakage rate or a total level of leakage

for a component or system. A leakage rate or leakage specifica-

tion should be determined from an analysis of the effect of leak-

age on the system as well as on the mission or application in

which it is to be used. At the outset, good design and fabri-

cation techniques are requisite to assure proper and safe per-

formance. Long-term storage of the system may be necessary;

this should be taken into account. A leak-detection procedure

requires careful planning in advance, with consideration of the

test sensitivity and response time that will be required in test-

ing the system for leakage.

It may be preferable to specify a level of maximum toler-

able leakage rather than maximum allowable leakage rate. The

maximum tolerable leakage usually can be obtained by multiply-

ing the maximum allowable leakage rate by the length of time a

system is expected to be usable, including the period during

which it is to be in storage. However, if fluid is not to be

introduced into the system until it becomes operational, the

maximum tolerable leakage need be specified only for the dura-
tion of the mission. The level of the maximum tolerable leakage

should be specified when the total amount of leakage is more im-

portant in its consequences than is the rate at which it is dis-

pensed.

7.2 SPECIFYING MAXIMUM ALLOWABLE LEAKAGE RATE

One approach to the determination of maximum allowable

leakage rate is to determine the leakage rates which apply to

the following situations:

• System failure during the operational life of the

system

• Hazard to either equipment or personnel

• Unacceptable appearance of the system

• Assurance of adequate design and good construction on

the part of the manufacturer

The smallest leakage rate assigned to the above listing is

taken to be the maximum allowable leakage rate on which specifi-

cations will be based. If the fluid in the system is to be a

liquid, it is necessary to correlate the above maximum liquid

leakage rate to the leakage rate of a tracer gas. Leak testing

can then be conducted with a gas-sensitive leak detector of

high sensitivity, using a calibrated gas leak as a standard.
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The accuracy of calibration of a qualified or reference

leak and the overall accuracy of the leakage test are such

that it is advisable to specify a level of leakage rate which

is at least a factor of two lower than the maximum allowable

leakage rate as chosen above. It is much better to add the

safety factor to the maximum allowable leakage rate than to

require that measurement of the leakage rate be performed

with high accuracy.

Setting the maximum allowable leakage rate should also

include the following considerations:

• Is the cost involved in performing the leakage

measurement reasonable? If the requirements are

set so high that the unusual techniques and/or

equipment are necessary to perform the measurement,

it might be prudent to reevaluate the specified

maximum allowable leakage and lower the requirements.

• Is the maximum tolerable leakage less than the in-

herent or otherwise unavoidable, leakage normal to

the operation of the system? If this is the case,

the leakage standard should be revised upward. For

example, if the allowable leakage specified is less

than the leakage expected from permeation there is

not much point in assigning more stringent leakage

specifications. If requirements are relaxed, re-

liable leakage measurements can be made more quickly
and at less cost.

The allowable leakage rate should be specified for the gas

used in the operation of the system. The value should be given

in units of pressure multiplied by volume per unit time at a

specified pressure differential across the leak. Gas leakage

tests can be performed with gases other than the one designated

if a formula is specified for correlation between the gases.
A correlation which produces conservative values should be
used.

It is very important to specify the pressure difference

across the leak. This should be at the highest operating pres-

sure of the system. Whenever possible, leakage measurements

should not be performed at low pressures only. A test must be

made at the maximum operating pressure to reveal any self-clean-

ing leaks, check-valve leaks, and leak expansion. The testing

should be done both at maximum operating pressure and at one

or several pressures below this maximum to completely eliminate

the possibility of check-valve leaks. However, leakage at maxi-
mum operating pressure must be measured first.

The temperature for the leakage test should be specified

as the operating temperature. Changes in the dimensions of the

leak due to thermal expansion or contraction can affect measured

levels of leakage.
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7.3 INSTRUMENT qUALIFICATION

The sensitivity of a test instrument must be determined be-

fore it is used in testing equipment for compliance with a set

of leakage-testing specifications. When this is done, it is

suggested that the instrument should be said to have been quali-

fied rather than calibrated.

The term oalibrated implies that a given reading on the in-

strument corresponds to a leakage rate known to a certain accu-

racy. Actually, all that is known is that the indication bears

a proportional relationship to the leakage issuing from the test
leak. The calibration of the test leak is then a matter of com-

paring its conductance with that of one or more other leaks whose

leakage rate is known, presumably with greater accuracy than is
the conductance of the test leak.

The actual conductance or leakage rate must depend on the

accuracy with which pressure, differential pressure, and volume

flow rate can be measured. Alternatively, it is possible to

measure and calibrate the mass flow rate by measuring the change

in the buoyancy of a gas environment caused by leakage into that

environment in a given period of time. A change in buoyancy in-

volves units of mass, length, and time, each of which can be

measured and defined with high accuracy.

The leakage through a "standard" leak used by one organi-

zation may be different from that through a "standard" leak used

by another organization even though both groups claim that their

respective leaks have the same value of conductance. These dis-

crepancies arise because of errors in leak calibation, the cali-

bration and stability of the instruments used, the purity of test

gases, etc. They are troublesome and difficult to resolve, es-

pecially when specifications requiring high accuracy of leakage

measurement have been accepted and must be met.

The accuracy with which leakage can be measured need not be

made of prime importance however, in qualifying a testing in-

strument or system. Most practical situations require that

some particular level of leakage not be exceeded. It need only

be established that the leakage in the tested system is less

than the allowable maximum. This can be done without requiring

high accuracy of the testing instrument or of the test, simply

by lowering the maximum allowable leakage rate and increasing
the tolerance to which the rate needs to be measured.

An alternative and more certain approach is to specify that

a set of leaks, all calibrated at the same time and under the

same conditions, be supplied and used in all leak tests made on

a system and its components. If the item is shipped to a distant

location the leak used to test it should be shipped with it.

This procedure will improve the consistency in the measurements

made at the point of manufacture and at the point of use, although

it is impractical to follow when many units are involved. Two

leak detectors at two different locations can be calibrated
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against one another with better accuracy if the same test leak
is employed. In any event, the accuracy with which the leakage
rate of a test leak is known should be higher than the accuracy
required for qualifying a piece of test equipment in terms of a
given set of leakage specifications.

To qualify the instrument, the test leaks and their method
of use should be carefully detailed. Test leaks may be supplied
by the manufacturers of the leak detector or by the specifier's
laboratory. If the leakage measurement is to be performed on
several pieces of equipment in various locations, the test leaks
used for the various equipments should be similar and procedures
should be standardized. The leakage of the test leak should be
in the range of the specified leakage.

A qualifying test shows that, under the conditions of leak-
age measurement, it is possible to determine that a certain
leakage rate is not exceeded. It is important in detailing
the procedure that the test is being qualified and not the in-
strument itself. For highest accuracy, the same gas should be
used for qualifying the. test leak that is used for measuring the
leakage rate of the system. The gas should be introduced at the
same pressure and in the same concentration into the qualifying
leak as into the system being tested.

If leaks smaller than 10 -6 atm-cc/sec are to be measured,
it should be specified that the system should not be cleaned
prior to leakage testing. Cleaning fluids will clog the smal-
ler leaks in the system, and thus prevent their detection.

7.4 TESTING TECHNIQUE, SAFETY, AND DESIGN

Providing the allowable leakage is specified and an accept-

able correlation is given between the various test gases, it

should not be necessary to specify the exact equipment to be

used in the test. However, it is necessary to state in some

manner whether leakage measurement or location is required.

Leakage measurement rather than location is the only reliable

method of testing to determine the maximum leakage. It might
be necessary to specify the use of an enclosure to ensure that

all gas leaking from the system is collected by the leakage-mea-

surement equipment. These specifications should be written to

ensure that all of the gas which leaks out of the system is being
measured.

Only under unusual circumstances should leakage-location

techniques be used for leakage measurement. This method will

drastically affect the credibility of the test. When a leakage-

location technique is used, the sampling speed should be spec-

ified and extremely rigorous methods of qualifying the technique
(not the equipment) should be used.
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7.4.1 Sa fetj, Statement

Some statement must be made as to the safety precautions

necessary while tests are being performed. If large pressur-

ized vessels are being used, warning concerning proof-testing

must be given. Decision must be made by the designer as to

whether it is permissible to test at high pressure prior to

proof-testing. Proof-testing using a hydrostatic test will

clog most small leaks. It is, therefore, necessary to weigh

the relative importance of leakage and the other factors that

are involved in determining the overall safety of the system.

7.4.2 Design for Leakage Testin 9

Testing requirements should be considered early in the

design of the system. System design should take into consid-

eration such items as location of ports or connections for leak-

age measurement. The system must be capable of being tested

quickly. It should not, for example, contain sealed voids which

could greatly increase the testing time.

7.5 GENERAL LEAKAGE TEST SPECIFICATIONS

Several technical societies and certain Government agencies

introduced approved leakage testing procedures for specific

types of equipment. These tests provide both the equipment
manufacturer and the user with uniform methods for conducting

leakage measurement. For example, the tests detail the data

to be recorded, calibration of the test, and the computation

of leakage rate. Table 7-1 lists some of these tests and their

originating societies, along with the number which identifies

each document.
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8,1.2 Porous Plu 9 Leaks

Porous plug leaks are cited in the literature (Refs. 8-3,

8-4, 8-5, 8-6, and 8-7). A leak of this type consists of a

metal, ceramic, or glass plug containing extremely fine pores.

Flow through the plug is molecular. Therefore, the change of

flow which will result from a change in the type of gas may be

calculated from Equation 6-24. Such leaks can be made as reser-

voir or non-reservoir types, and can be calibrated against an-

other reference leak or by absolute measurements of flow and dif-

ferential pressure.

8.1.3 Capillary Leaks

Another type of leak which can be calibrated is made from fine

capillary tubing of glass or metal, such as Pyrex and hydrogen-

fired nickel. The capillary is constricted over a short region

to the extent required to limit the flow of gas to a desired value.

The capillary is mounted within and attached to one end of, a

strong metal tube, to prevent breakage during normal handling.

Such leaks can be made with leakage rates from about 5 × 10 -_

atm-cc/sec upward. Although smaller-sized leaks of this type can

be made, they become extremely difficult to use because of clog-

ging. These leaks can be calibrated with one or with a mixture

of gases. They are normally made to be used with a separate sup-

ply of gas at a known differential pressure and are calibrated at

the same pressure.

8.1.4 Variable-leakage Sources

A variable leakage source for a given gas may be made from

a single capillary leak of fixed conductance by simply changing

the differential pressure across the leak. If the leak is to

supply gas at atmospheric or any other fixed pressure, the amount

of leakage can be controlled by changing only the input pressure.

A calibrated variable leakage source can be made by the use of a

pressure gage on the input side of the capillary. The gage can

be calibrated in leakage rate rather than in units of pressure.

A capillary leak may be connected to a small reservoir of

tracer gas with a pressure gage, to form a calibrated variable

leakage source. Figure 8-2 shows such a device, which is called

a leak factor gage. Its scale is marked in multiples of the leak-

age rate of the capillary when measured from atmospheric pressure
to vacuum. Provision is made for altering the pressure applied

to the input side of the capillary.

The General Electric Type LS20, shown in Figure 8-3, is an

example of another variable leakage source. Figure 8-4 is a

schematic diagram of the system used. The unit includes a reser-

voir of halogenated hydrocarbon which is valved into a ballast

tank in gaseous form. Also connected to the ballast tank is a

glass capillary tube and pressure gage. The amount of leakage

through the calibrated capillary is dependent on the amount of

pressure in the ballast tank. Because the flow through the leak
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Figure 8-2

Reservoir Leak with Leak

Factor Gage. (Reprinted

with permission of the

Instrument Department,
General Electric Company.

West Lynn, Massachusetts.)

Figure 8-3

Variable Leakage Source Heated-anode

Leak Detector. (Reprinted with per-
mission of the Instrument Department,

General Electric Company, West Lynn,
Massachusetts.)

TRACER

GAS
SUPP_

(PRESSURE
INCREASE)

[_RESERVOIR _ FILL
BALLAST

QUALIFIED

PROBE

VENT
(PRESSURE DECREASE}

Figure 8-4. System for LS20 Variable Leakage Source
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is laminar the gage is marked in units proportional to the square

of the pressure drop. It is an excellent standard to use with

probe-type instruments, such as the heated-anode halogen leak

detector. The probe may be placed directly in the leak exit;

the calibration approximates operating conditions.

8.1.5 Variable Conductance Leaks

A leak whose conductance can be changed is called a variable

leak. It can be fashioned so that the conductance can be pre-

cisely set and reset many times. Such a leak takes the form of

an elegant needle valve, or a mechanical means for flexing a

piece of crushed metal tubing so as to slightly alter the size

of the leak path. The accuracy with which the conductance can

be set has been improved greatly over the past few years. Never-

theless, a variable conductance leak should not be used as a re-

ference for calibrating a leak detector to be used in checking

equipment-leakage specifications unless it is calibrated after

each adjustment of its conductance.

8.2 ERRORS IN LEAKAGE MEASUREMENT

The principal errors contributing to the inaccuracy of leak-

age measurements are:

l.

2.

3.

•

5.

Inaccuracy in calibrating the leak

Nonlinearity of the leak-detection instrument

Variation in pressure differential applied across

the leak

Impurity of gas applied to the leak

Variation in the amount of gas reaching the detector

Comparisons between leaks of various manufacturers (Ref. 6-2)

have shown that their accuracies do not agree to more than plus

or minus fifty percent of a mean value. This may be seen by the

experimental plot of Figure 8-5, which shows the calibrated leak-

age readings as plotted to the response of a very linear mass

spectrometer. The straight line drawn in the graph is the least-

mean-square value of leakage versus spectrometer response. This

line does not imply the correct value, but the general pattern

around which the values of the leaks congregate.

Even the leaks of a single manufacturer vary by approximately

ten percent. This is usually the guarantee which is presented

upon purchase of the permeation-type calibrated leak. Leaks of

a variable type -- for example, the General Electric LS20 -- are

claimed to be accurate only to plus or minus twenty percent.

Most commercial leak detectors display the response to a

detected leak as a current reading on a sensitive microammeter.

It is usually assumed by the operator that a current reading

twice the magnitude of a previously observable one represents a

two-fold increase in leakage. This is not necessarily correct,

8-5



lo'

i02

io3

io4
¢J
¢p

¢J
(J

iO-5
0

n GE-ATL

• CEC
e VEECO

& WORK

• VIC

o ELION

x GE- LYNN

,/
/

/

/
/

jo-9

-IO
I0

io',4 io-'3

Figure 8-5.

i_'z i_'t i_iO i_ 9 i0 "e

ION CURRENT, Amperes

Comparison of Leakage Values for Leaks

Supplied by Various Vendors (Ref. 6-2)

I0 "7

8-6



because of nonlinear properties associated with the structure

of the pumping system or the electronic circuitry.

A typical correlation is shown in Figure 8-6. The confi-

dence range is a fan-shaped area which converges on the mean

values of actual and measured leakages. The tightest confidence

range for a fixed amount of data is obtained when the points are

grouped evenly at the extremes of the actual leakage range. Un-

less linearity of the correlation has been established it is best

to have the data evenly distributed throughout the leakage range.

Because such deviations exist it is recommended that when a leak-

age measurement is made to a closer tolerance a qualified leak of
that specific value should be used.

_U
t9

X

_J

UJ

u_

CONFIDENCE RANGE

OF CORRELATION

ACTUAL LEAKAGE

Figure 8-6. Correlation Between Actual

and Measured Leakages

Leakage is dependent on the pressure differential across

the leak. When leak detection is done by a tracer probe, the

pressure differential is usually one atmosphere, the gas being
sprayed over the suspected area without the aid of additional

pressure. Should leak detection be performed at high altitudes,

the atmospheric pressure is less than one standard atmosphere;

the magnitude of this reduction is as much as twenty percent in

such places as Boulder, Colorado. If the leaks which are being
located are of a laminar nature, the flow through the leak is

proportional to the square of the pressure differential. There-

fore, a leak measured at atmospheric pressure in Boulder, Colo-

rado, will be approximately forty percent lower than one in Cape
Kennedy, Florida.
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As has been mentioned, certain calibrated leaks contain

their own gas supply, whereas others have the tracer gas sprayed

on the leak at one-atmosphere pressure differential during use.

Calibrated leaks wlth a self-contained gas supply always deliver

to the detector a fixed amount of gas which is interpreted as

the sensitivity of the leak detector. On the other hand, leaks

where gas is added during use produce the calibrated amount of

leakage only when a one-atmosphere pressure differential is sup-

plied. The latter leaks, therefore, deliver less than the cali-

brated amount of leakage when used at high altitudes, where the

atmospheric pressure is lower.

Another source of inaccuracy is the impurity of the tracer

gas used for leakage measurement. If a tracer probe is used for

leak detection, the gas is sprayed over the suspected area, in

which case it is quite posszble that the tracer gas is diluted

with air as it approaches the leak. Therefore, the response of

the leak detector will be reduced by the amount of air impurity

entering the detector with the tracer gas. The use of a cali-

brated leak with a self-contained gas supply is thus undesirable,

since it would not reproduce the leakage measurement method.

In other words, the gas should be sprayed on the calibrated leak
in the same manner as on the tested leak.

Tracer gas traveling to the detector may be absorbed on

system surfaces. This would decrease the response of the de-

tector. For accuracy, therefore, calibrated leaks should be

positioned on the system as near as possible to suspected leak

sites. Alternatzvely, they may be positioned as far away from

the detector as possible to show minlmum sensitivity.

Because of the variations discussed in this section, a mea-

sured leakage value is probably only withzn a factor of two

from the true value. Thls implles that if a leak is measured

as 1 x i0 -s atm-cc/sec! the actual value of that leak is between

2 x 10 -s and 0.5 x 10-= atm-cc/sec. Therefore, if the maximum

allowable leakage of a particular system is 2 x 10 -S, the speci-

fication may be wrztten wzth a leakage not to exceed 1 × i0 -s,

with the knowledge that the accuracy of this measurement is a

factor of two. There is reasonable assurance that if the mea-

sured leakage is no higher than the one stated on the specifzca-

tion (i × 10-s), the actual system leakage will be no greater

than the allowable one (2 x 10-s). This method of speczfying

leakage is much more sensible than specifying a slightly hzgher

leakage value with an unreasonable accuracy.

8.3 AVAILABILITY OF STANDARD LEAKS

Typical of the precision leaks commercially available are

those shown in Table 8-1. Only a limited number of gases may

be used with such leaks. Only one type of leak is designed to

deliver gas at atmospheric pressure; that is the General Electric

LS20 leak for the heated-anode halogen leak detector. Some manu-

facturers will produce precision leaks on request. One of these

is Hastings-Raydist, Incorporated, formerly the R.H. Work Company.
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8.4 LEAK QUALIFICATION TECHNIQUES

Qualified precision leaks are available covering a range of

eight decades of leakage values. Leakage rates are determined by

methods such as the following, which are described in this sub-
section.

• Isobaric volume change

J Pressure rise method

• Pressure drop across a known conductance

• Pressure measurement at constant pumping speed

• Change in intensity of alpha radiation

• Mass leakage analysis

8.4.1 Isobaric Volume Change

A schematic diagram of the equipment used in the determina-

tion of leakage rates by isobaric volume change is shown in Fig-

ure 8-7. One side of the leak is attached to a vacuum system;

the other side is attached to a gas reservoir at atmospheric

pressure. To this reservoir is attached a capillary of known

cross section, in which a slug of indicating fluid is placed.

As gas leaks from the volume into the vacuum the slug of fluid

travels down the capillary, to keep the pressure in the reservoir

constant. As stated in Equatlon 8-1, the leakage rate is deter-

mined by measurement of the volume displaced by the travel of

the slug down the capillary:

Q = P(v2 - v_) (8-1)
t

The primary limitation of thls method is the size of the

capillary involved. It is difficult to obtain a liquid which

can be placed in one end of a small capillary tube and subse-

quently forced out the other end. For this reason, the _rac-
tical limitation of such a method ls in the range of 10 -_ atm-

cc/sec. It would be theoretically possible to use a slightly

larger capillary, and to take longer periods of time between

readings. However, the errors might arise from gas permeation

through the liquid slug or through the walls. An error might

also be introduced by a change in barometric pressure or a

change in ambient temperature. This becomes particularly crit-

ical in the qualification of small leaks, since a slight tem-

perature change might produce a volume change greater than that

due to the efflux of the gas.

It is desirable to use a fluid with a low vapor pressure

so that the leak is not contaminated by the vapor of the fluid.

Unfortunately, most liquids of low vapor pressure are also of

high viscosity, making it difficult to obtain an accurate mea-

surement of the flow of liquid displaced in the capillary.
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Such fluids also tend to form bubbles at the end of the capil-
lary. The added pressure necessary to remove the bubble of
liquid from the end of the capillary prevents the experiment
from being isobaric.

Haywood (Ref. 8-8) overcame the need for an indicating
fluid by the use of a piston to replace the effluxing gas. In
this method, a differential pressure gage is used to measure the
pressure in the gas volume, and the piston is pushed into the

volume at a rate to keep the pressure constant. The pressure

gage need not be calibrated. This method can readily measure

leakage as low as 10 -6 atm-cc/sec.

8.4.2 Pressure Rise Method

The second method of qualifying leaks is the pressure rise

technique (Ref. 8-9). A leak and its gas supply are attached

to an evacuated chamber of known volume (Figure 8-8). The leak-

ing gas is allowed to accumulate in this volume, and the pres-

sure rise is measured at various intervals. The leakage may
then be computed by the equation:

Q = vP

Laufer (Ref. 8-10) describes this procedure in detail, claim-

ing an error of less than i0 percent. The major difficulty with

•_,ATMOSPH ERIC.",:
'',.. PRESSURE""

J, * .• • ,• ,.-,, - - .'.'.',.. t
LEAK

VACUUM

PRESSURE
GAGE

Figure 8-8.

VAC.UUII pump

Leak Qualification by Pressure Rise Technique.
(Reprinted from J.W. Marr, Study of Static and

Dynamic Seals in Liquid Rocket Engines. Final

Report Phase II, Contract NAS 7-102 (Ref. 6-2).)
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this type of qualifying technique is in the measurement of pres-

sure. The pressure in an evacuated system usually does not stay

constant, but gradually increases because of outgassing of the

walls of the chamber. The pressure rise due to this desorption

must be taken into account in the calculations.

A second difficulty in pressure measurement is the lack of

a suitable gage. A McLeod gage may be used, but is suitable only

for the higher pressure ranges. If a long period is used to ob-

tain a readable pressure change, outgassing becomes a particu-

larly difficult problem. Ionization gages are difficult to use

for this work, because of lack of adequate calibration and be-

cause of outgassing at the low pressures at which they work.

Another alternative is the use of a mass spectrometer as the

pressure gage (Ref. 8-11). In this case the effect of outgas-

sing may be overlooked, since the desorbing gas is usually not

the one being measured.

Fisher (Ref. 8-12) has described a "calibrated" leakage rate

system suitable for use on large vacuum chambers which is not

limited by the usual difficulties. Known leakage rates of a

gas enter an evacuated chamber to which a mass spectrometer is

coupled. Leakage rates of the actual substance are thereby de-

termined, obviating the need for an inert tracer gas. An ac-

curacy of plus or minus twenty percent is claimed for the method.

8.4.3 Pressure Drop Across a Known Conductance

A third method of determining leakage rates is measurement

of the pressure drop across a known conductance. This technique

is illustrated in Figure 8-9. The pressure drop across a known

conductance is proportional to the flow. As previously stated,

Q = C(PI - P2) (8-3)

In molecular flow the conductance C may be determined from

theory using known dimensions of the leak. Again, the major

difficulty is in obtaining accurate measurements of pressure.

Ionization gages have been used for pressure measurement, but

their readings are often questionable. With the use of a pre-

viously qualified leak, this type of measurement can also be

used to calibrate ionization gages (Ref. 8-13).

8.4.4 Pressure Measurement at Constant Pumping Speed

A fourth method of qualifying a leak is measurement of the

pressure which results when a vacuum system is pumped at a known

speed (Figure 8-10). The equation then used is:

Q = sP (8-4)

The system is usually constructed so that the pumping speed is

controlled by an orifice and may be rigorously calculated on

theoretical grounds. The disadvantage of such a method is, again,
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Figure 8-9.
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Leak Qualification By Pressure Drop Across a

Known Conductance. (Reprinted from J.W. Marr,

Study of Static and Dynamic Seals in Liqui_
Rocket En@ines, Final Report Phase II, Contract
NAS 7-102 (Ref. 6-2) .)
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Figure 8-10. Leak Qualification By Pressure Measurement

at Constant Pumping Speed. (Reprinted from

J.W. Marr, Study of Static and Dynamic Seals

in Liquid Rocket En@ines, Final Report Phase II,
Contract NAS 7-102 (Ref. 6-2).)
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that the pressure of the system must be accurately measured.
If the leakage Q and the pumping speed S are known, P can be
derived using the above Equation 8-4. This type of system has
also been used to calibrate pressure gages (Ref. 8-14). Some
accuracy is gained if a mass spectrometer is used as the pressure
gage since the error due to outgassing may be eliminated.

8.4.5 Change in Intensity of Alpha Radiation

A type of standard for leak qualification is described in

Reference 8-15. Radioactive polonium is used as an alpha emit-

ter (alpha particles are helium atoms stripped of their elec-

trons). When alpha particles come in contact with other atoms,

they acquire the necessary electrons to become helium molecules.

Since the radioactivity of the polonium sample can be measured

accurately, the number of alpha particles evolved is known.

Therefore, the amount of helium gas formed is also known. In

this way pressure-measuring instruments may be accurately cali-

brated. The only source of error is possible absorption or en-

trapment of the helium within the leak. This may be _revented

by good design and/or the establishment of steady-state condi-

itions.

The above technique is limited to helium gas calibration.

It can be used effectively only in the low-leakage ranges _ 10 -8

atm-cc/sec) because of the shielding that would be necessary in

its use at higher concentrations of radioactive material. How-

ever, the technique is an excellent supplement to the other me-

thods described, and it is most effective in the range which is

difficult to measure by other techniques.

8.4.6 Mass Leakage Analysis

A novel method of measuring the mass of a gas in a chamber,

as well as its rate of change with time, has been demonstrated

at TRW Systems, Inc., by R.J. Salvinski (Ref. 8-16). The meth-

od has the advantage that measurement is theoretically indepen-

dent of the type of gas, the ambient pressure in the chamber,

and the gas temperature. However, these parameters do affect

the accuracy of the measurement as they affect, for example, the

sensitivity of the test and the size of the chamber. The meth-

od may be used to calibrate the conductance of a leak in terms

of the fundamental units of mass, length, and time.

A sensitive electrobalance is placed within an evacuated

chamber. A spherical glass ball of known volume V B is attached

to one end of the electrobalance and suitable counterbalancing

weights to the other. An electrical signal is generated which

is proportional to an unbalance in the force moments about the

fulcrum of the electrobalance. This signal is fed back through

an amplifier to an actuator which restrains any deflection of

the arm of the electrobalance by applying a counter torque. A

meter reads a voltage that is proportional to the countertorque.
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The system can be used to measure a mass of gas admitted
to the chamber through a leak. When the gas enters the chamber,
the density of molecules in the chamber increases and causes the
buoyant force FB on the ball to increase. The arm becomes un-
balanced and a countertorque is applied to compensate it.

The buoyant force is equal to VBPAg. The gas density PA
is equal to MA/Vc, where MA is the mass of the gas and Vc is the
chamber volume less that of the ball. Thus:

VB g (8-5)
FB = MA V

c

The meter reading will therefore be proportional to the mass of

the gas, the known volumes, and the gravitational constant, g.

The reading should be independent of the type of gas, its temper-

ature, and its pressure. It is assumed that the measurement is

made after leakage has been stopped, that there is no outgassing
or absorption of gas; and that the sizes of the chamber and ball

have not changed, because of a change in temperature, for example.

It appears that the conductance C of the leak can be found

as follows. As leakage proceeds, the pressure P in the chamber

increases toward the pressure P I as

P = PI i - e (8-6)

Since the mass in the chamber is proportional to the pressure P,

PV
c

M A = _ (MW) (8-7)

If the time constant of the electrobalance is short compared to

that of the leak, Vc/C , it is now possible to determlne the rate

of change of the buoyant force with respect to time, from data

on the variation of the force itself with time. Recall that F B
is proportional to the output reading of the electrobalance. A

differentiator placed in series with the output will produce a

reading directly proportional to FB"

As derived from the previous equations,

FB = _ VB (MW)

and the rate of change of buoyant force is:

FB = e _-_ (MW)

If P_ and T are now constant, then:

vetl
- e cJ

V B

_8-8)

(8-9)
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Ct
V

_B = C e c (KI) (8-10)

and

Zn (FB) = Zn K1 C- (Tc) t (8-ii)

A semilog plot of in (FB) versus t is then a straight line of
negative slope (C/Vc). Since Vc is known, the desired conduc-

tance of the leak may be calculated. The conductance has thus

been determined from the data without a knowledge of the en-

trance pressure, the gas temperature, or the molecular weight.

The leakage rate Q0 of the leak with a forepressure PI and

and afterpressure of zero is simply (C) (P,). Here the type of

gas and its temperature are the same as were used in determining

the conductance, so as to account for the effects of these para-

meters on viscosity and the mode of flow.

The sensitivity of the mass leakage analyzer is determined

by the ratio of the volumes and the sensitivity of the balance.
In the first demonstration leakage rates of 10 -2 atm-cc/sec could

be measured. Leakage rates near 10 -5 atm-cc/sec have been mea-

sured in improved models of the system.

8.5 POSITIONING OF TEST LEAK

Since there are many variables which can affect the sensi-

tivity of testing, it is necessary that leakage calibration or

qualification be frequently performed. Locating a calibrated
leak close to a suspected undesired leak will result in test

measurements that most nearly reflect the actual leakage rates.

Figure 8-11, for example, shows two methods which might be used

for leakage measurement.

Method 1 gives better assurance that the concentration of

tracer gas is the same in all phases of the test than does

Method 2. These methods are only as accurate as the linearity

of the detector response. Either method will show whether the

system leakage rate is greater or less than the reference leak.

In practice, Method 1 is easy to incorporate in a rigid hood in

a permanent test position. It is not always easily arranged
with a flexible hood.

It is extremely important when establishing sensitivity that

the tracer gas be applied to the leak for the same period of

time as it will be applied to each suspected area. This will

take into account the effects of absorption on the walls and the

effect on the time constant volume of the system.

For accurate results the unknown leak should be placed in

the same port of the detector as the qualified leak, and under
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identical conditions. In calibrating, if the object to be tested

is located immediately adjacent to the inlet of the detector,

the known leak must be placed in that position. If the object

to be tested is a vacuum chamber or an object to be located in a

vacuum chamber, and the leak detector will be connected to the

chamber foreline, the known leak must be located away from the

foreline in the vacuum chamber. In this case, output versus time

must be known.

When a glass qualified leak is placed inside a vacuum cham-

ber, the helium permeation through the glass envelope of the

qualified leak as well as that through the quartz membrane may

be significant. The rate given by the manufacturer is for heli-

um permeation through the quartz membrane only.

When a system is calibrated by using a pure helium leak

with a one-atmosphere pressure differential across it, the rate

obtained during an actual test must be that for pure helium

across a one-atmosphere pressure differential. If, in the ac-

tual test, the helium is reduced in concentration by being mixed

with another gas, the calibration must be adjusted accordingly.

The reference leak should have a leakage rate approximately

equal to the permissible leakage rate, particularly if the re-

sponse of the detector to leakage is not linear. The smaller

the reference leakage rate the greater the difficulties associ-

ated with its use.

Two standards are available for the calibration of mass-

spectrometer leak detectors. American Society for Testing and
Materials standard F78-67T covers a procedure using qualified

leaks (Ref. 8-17). American Vacuum Society standard AVS 2.1,

which is reproduced in Appendix B, determines the significant

performance characteristics in addition to the calibration (Ref.

8-18) .
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Section 9

MASSSPECTROMETERSAND LEAKAGETESTING

9.1 INTRODUCTION

The mass spectrometer is a device which identifies atomic

or molecular species by their mass-to-charge ratio. The opera-

ation consists of ionizing the sample, separating the different

ion species, and detecting the separated species. A mass spec-

trometer that is built for leak detection is usually limited to

the detection of helium. Other small mass spectrometers, called

residual-gas analyzers, are built to scan over a range of masses

and are useful in partial pressure measurements of residual gases

in a vacuum.

Different schemes are employed for separating the ions ac-

cording to their mass-to-charge ratios. A deflection type of

mass spectrometer accelerates the ions and effects a separation

by passing them through a magnetic or electrostatic field, or

both. A time-of-flight mass spectrometer separates the ions by

their different speeds over a fixed path. Several varieties of

this latter type are available, namely the pulsed-beam, omega-

tron, and radio-frequency mass spectrometers. J.B. Farmer sur-

veys the various types of mass spectrometers and discusses the

outstanding properties of each type in Chapter Two of Mass Spec-

trometry (Ref. 9-I).

The deflection type of mass spectrometer is most commonly
used in leak-detection work.

9.1 .l Application

Mass spectrometers for use in leak detection have been devel-

oped commercially by many firms throughout the world (see Part

III). This type of instrument has proved to be highly versatile

in its application to many different situations. It has gained

wide acceptance, largely because of its high sensitivity and

specificity to a single tracer gas helium, which has a very low

concentration in earth's atmosphere.

Applications also cover a considerable range of size in

electronic components. The same instrument can be adapted to

test upwards of 1200 individual parts per hour or to test the

integrity of large vessels such as are used for the storage of

cryogenic liquids.

A residual-gas, or partial-pressure, analyzer can also be

used to determine the leak-tightness of a system (Ref. 9-2).

For example, it is possible to differentiate between outgassing,

pump-oil backstreaming, and air leakage of an evacuated system

from a scan of the first seventy mass numbers. When an air leak

is indicated, by the presence of a nitrogen-oxygen signal, the

i
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instrument can be adjusted to respond only to helium. A helium
probe is then used to locate the defect. Briefly, some of the
responses and their diagnoses are:

Gas Present in System Probable Cause

Oxygen, nitorgen and

argon

Nitrogen

Water

Hydrocarbons

Air leak

Leak in liquid-nitrogen baffle

Virtual leak, leak in coolant

lines

Ineffective baffling of pumps

9.2 SENSITIVITY

The sensitivity of a mass spectrometer depends upon several

factors, some inherent in this instrument and others dependent

upon the response to different gases. A helium leak detector

will usually have a minimum-detectable concentration ratio of

about one part of helium in ten million parts of air, or about

10 -I° atm-cc/sec.

The method by which ions are detected has the greatest ef-

fect on the sensitivity of the instrument. There are two common-

ly used methods for detecting the ion current: I) by an electro-

meter, and 2) by an electron multiplier. The electrometer collects

the ion current directly on an electrostatically shielded plate.

This current establishes a voltage across a resistor of very high

resistance which then is amplified by a high-gain DC amplifier.

In the second method the ions are collected on the first of

several dynodes of the electron multiplier. An ion striking the

first dynode releases an electron, which travels to the next dy-

node; there a larger number of electrons are released. The pro-
cess continues and the number of electrons is increased from

stage to stage for as many times as there are stages in the de-

vice. The response of an electron multiplier which is exposed

to a vacuum system (as opposed to one sealed in its own envel-

ope) depends upon the condition and past history of the multi-

plier. For example, poisoning of the dynodes by some contami-

nant in the vacuum system will change the electron yield for

tracer-gas ions. In fact the contaminant may be any gas other

than the tracer, such as oxygen, hydrogen, or carbon monoxide.

When using such a detector, it is advisable to calibrate ±re-

quently the output reading of the instrument, keeping a record

of the sequence in which gases or vapors have been introduced

and removed from the system being tested.

Sensitivity of a helium spectrometer is also a function of

both total pressure and helium concentration. If excessive out-

gassing or leaks in the system under test raise the system pres-

sure above approximately 10 -2 torr, the sensitivity decreases

rapidly. In this case, auxiliary pumping may be used to reduce
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system pressure. Such pumping, however, will also reduce sen-
sivity; also, if too large an opening is used in the detector
probe, sensitlvity decreases rapidly because pressure within
the mass-spectrometer detector will rise to the 10-2 torr region.
A compromise must be sought between too large a probe opening,
which reduces sensitivity, and too small an opening, which does
not allow entry of enough helium for detection.

Present-day mass spectrometers actually have higher sensi-
tivities to masses 30 - 50 than to mass 4 for helium. By the

use of a tracer having a molecular welght in the above range,

the sensitivity of a leakage test may be increased by about three

orders of magnitude over that obtainable with helium (Ref. 9-2).

9.2.1 Ratings

Helium mass spectrometers are usually rated by their sensi-

tivity. Sensitivity is determined by the level of gas flow which

produces the minlmum detectable slgnal. The American Vacuum So-

ciety has promulgated a procedure for making such measurements

(Ref. 8-18). A copy of this standard (tentative), AVS 2.1, is

included in Appendix B.

The sensitivities are usually expressed in terms of helium

(atm-cc/sec), although a value for air will occaszonally be used.

For conditions of molecular flow the conversion to helium is ob-

tained by multiplying the air value by 2.7.

9.3 CHARACTERIZATION OF AN ION-DEFLECTING MASS SPECTROMETER

Figure 9-1 shows schematically the basic elements of an

ion-deflecting spectrometer. Singly ionized molecules or atoms

are produced by a stream of electrons in a small ionizing cham-
ber. The ions are drawn from the chamber and formed into a

beam of constant velocity. This beam passes into a magnetic

field in an electrlc field-free reglon. The beam interacts with

the magnetic f_eld and moves in a circular arc untll it leaves

the field. The beam then passes through a slit in a grounded

electrode, to an ion collector. The radius of curvature of the

beam while it is in the magnetic fleld is proportlonal to the

function M_-_ /B, where M is the mass of the ion, V is the beam
voltage, and B is the strength of the magnetic field. Only ions

having masses lying within a particular, narrow range will reach

the collector for a given setting of the voltage and magnetic

field strength. Other ions are collected on the grounded elec-

trode.

A mass spectrometer designed expressly for use in a leak de-

tector that is operated with a single tracer gas does not have

to be capable of scanning a mass spectrum. Beam optics and para-

meters such as the beam voltage and magnetic field are set to de-

tect the mass of the particular tracer gas with the highest pos-

sible sensitivity. Provision is made for fine tuning of the re-

sponse, by an adjustment of the electric field, for example.
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The electrometer stage of the DC amplifier is usually mounted
inside the mass-spectrometer tube. This keeps the input resistor
and other input connections dry, to minimize leakage currents. It
also makes the leads as short as possible from the ion collector
to the input element of the amplifier to prevent electrostatic
pickup.

The random noise level at the output of the amplifier is de-
termined largely by the resistance of the input resistor and the
bandwidth of the input circuit of the amplifier. The output
noise voltage varies as the square root of the product of the in-
put resistance and bandwidth. The average value of this noise is
zero. Superimposed on the noise will be small signal fluctuations
which are the result of energetic ions in the collector chamber
which strike the collector and are neutralized by electrons which

flow through the resistor. This type of fluctuation can occur

in the absence of the main ion beam. Lastly, there can be a DC

drift in the balance of the amplifier's output circuit, which of-

ten results in a slow, monotonic change in the meter reading.

Thus, in some instruments the zero balancing adjustment must be

reset from time to time to keep the meter on scale. DC drift

does not limit the sensitivity of the detector.

Drift and noise must be considered when quantitative values

of a leakage rate are being sought. Frequent checking of the re-

sponse with and without tracer gas is required when the magnitude

of the leakage is very small. Flushing of the system with an

inert gas other than helium is sometimes employed to remove mem-

ory effects, so that the leak signal will be as large as possible

against the noise background.

In some instruments it is possible to use tracer gases other

than helium. However, helium is most often chosen for the pur-

pose because:

i. Helium diffuses through a leak more rapidly than any

other gas except hydrogen.

2. Normal concentrations in the atmosphere are only one

part in 200,000 parts of air (Ref. 9-4). In most

cases the presence of tracer helium is clearly dis-

tinguishable from atmospheric helium. The latter is

sometimes found to add to the background level when

a spectrometer is operated at maximum sensitivity.

3. Except in systems which may contain deuterium gas,

there is little possibility that another gas will

give an indication that can be mistaken for helium.

4. Helium is inert and forms no compounds from which

it can be released by dissociation.

Helium is absorbed by elastomers. O-ring gaskets can become

saturated with helium and raise the background level in the

mass spectrometer. Helium is pumped in Penning discharge gages

by an ion burial process; since it forms no true compound it

can be released by regurgitation mechanisms. Helium entrap-
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ment in ion pumps is also not permanent; in fact its use as a

tracer gas in an ion-pumped system is to be avoided. (Fortu-

nately, these effects are not present in a system pumped by an

oil or mercury diffusion pump.) If a Penning gage is present

in a mass-spectrometer leak detector, it should be cleaned and

baked periodically to remove sorbed helium. The gage should

be off when the spectrometer is operating at maximum sensitivity.

In principle, it should be possible to convert a commercial

helium leak detector so that it will detect some other gas such

as argon, hydrogen, or neon. In practice, however, this can

prove to be expensive and unsatisfactory. The problems encoun-

tered stem from the higher concentrations of these other tracer

gases in the atmosphere and from the difficulty in distinguish-

ing the mass spectrum of the desired ion from the spectrum of
an unwanted ion.

Hydrogen and argon have been used fairly extensively with

mass spectrometers. However, their normal concentrations in

air are about one part in i0,000 and one part in 100,respec-

tively. Consequently, the background due to air seeping into

the system is considerably higher with these gases. Suitable

means must be used to compensate for this.

Hydrogen is more widely available and costs less than he-

lium. It is more readily ionized than helium, yielding a high-

er sensitivity for leakage measurements. But it is also formed

in the spectrometer ion source as a breakdown product of hydro-

carbons and water vapor, especially when these come into con-

tact with the spectrometer filament.

In a mass spectrometer for hydrogen special precautions

must be taken in the construction of the ion source. Vapor con-

tamination from the equipment under test is kept out of the spec-

trometer by a liquid-nitrogen trap in the inlet line to the ion

source. The ion-source construction is "clean," in that organic
materials are avoided and the demountable seals use metal foil

gaskets. Finally, the mass spectrometer pumping system comprises

a mercury diffusion pump with its own liquid-nitrogen trap. The

result is a significantly lower hydrogen background.

Cossutta and Steckelmacher (Ref. 9-5) have attained a sen-

sitivity of 4 x i0"1° atm-cc/sec on a lens mass spectrometer

using hydrogen as the tracer gas. With helium the sensitivity

was about half that for hydrogen. The background stability was

greater in the mass-4 than in the mass-2 region. Therefore,

the limiting sensitivity was about the same for both helium and

hydrogen.

Argon can be used as a substitute for helium, but will re-

duce the sensitivity of the spectrometer. It retains many ad-

vantages such as high ionization efficiency, chemical inertness,

and low cost. It has a relatively high background in air. The

principal disadvantage is that argon at mass 40 is difficult to
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resolve from the background peaks. Both the nitrogen and oxygen
peaks of air and hydrocarbons normally present in the vacuum
system increase the general background in the mass-40 region.
Thus argon is difficult to detect and measure_ Some of these
background difficulties may be overcome by use of the doubly
ionized argon peak at mass 20, although this produces a lower
sensitivity than measurements near mass 40. The mass-20 peak
appears ±n a relatively clean region of the spectrum. Thus
background ceases to be a problem. Slow diffusion of argon
through leak passages limits to some extent its use for leak
location.

The variable pressures and atmospheres associated with leak
detectors are factors contributing to the unpredictable life of
analyzer tube filaments. Occasional bursts of gas bring the
system up to high pressures. Even with protective circuits to
take care of these bursts, tungsten filaments will have a very
short life. It is possible to increase filament life (Ref. 9-6)
by coating it with thoria. Most commercial leak detectors are
now sold with spectrometer tubes containing thoria-coated or ir-
ridium-tungsten filaments. Some leak detectors are built with
dual filaments; if one filament burns out, the second can be
quickly put into operation. Ionization of the tracer gas varies
with electron-emission current. Therefore, the emission must be
kept constant with an automatic regulator.

Contamination of the ion source can result in low sensiti-
vity or unstable operation. One commercial helium leak detector
contains a self-cleaning ion source in the mass spectrometer
head. In that instrument, the ion repeller is a grid which runs
red-hot, to burn off contamination deposits which try to form on
the electrodes (Ref. 9-7). On other instruments, the ion repel-
ler is platinum-clad and may be cleaned by immersion in a soft
flame.

9.3.1 Some Other Ion Spectrometers

Ion mass-spectrometers other than the magnetic sector type

may be used for leak detection. For example, Varadi (Ref. 9-8)

describes a radio-frequency mass-spectrometer leak detector. In

this type of analyzer tube ions are accelerated by a direct-cur-

rent voltage, and then sent through a series of grids which have

a radio-frequency (RF) voltage applied to them. If the transit

time of the ions in going through the grid structure is in prop-

er phase with the frequency of the applied RF voltage, the ion

will gain energy. A repelling potential placed on a grid be-
tween the RF structure and the collector prevent all but those

ions which have gained a maximum energy from reaching the col-

lector. This type of tube does not require a magnetic field.

It requires a large amount of electronic circuitry.

Barrington (Ref. 9-9) developed an inverted magnetron type

of ion detector. In this tube, the anode is mounted centrally

inside a grounded cylinder which acts as the cathode. A magnetic
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field of about i000 gauss is applied axially. A discharge is
initiated on application of a potential difference of about
1500 volts between the electrodes. The electrons, trapped by
the magnetic field, circulate around the anode. Positive ions
are accelerated radially towards the cathode and, because of
their much larger mass-to-charge ratio, are deflected only
slightly by the magnetic field.

A small exit hole is provided in the cathode. Ions emerge
through the hole at angles and with velocities which vary ac-
cording to the mass of each species. The ions continue to trav-
el in the fringing magnetic field, and some spatial separation
is achieved as a function of ion mass. The sensitivity of the
device is in the order of 10-:° atm-cc/sec for helium. It does
not appear to have sufficient resolution to be useful as a gas
analyzer, however. Basically the magnetron interaction space
may be thought of as an ion source. Collislonal processes im-

pair the formatlon of an ion beam at the exit hole where the

angle is strictly a function of the mass of the ions contained

in it, however.

An omegatron leak detector is described by Nicollian (Ref.

9-10). The omegatron is basically a small, compact cyclotron.

The electron beam produces ions of the residual gases in the

volume, and the magnetic field causes these ions to move in

circular paths at their cyclotron frequency. When the applied

radio-frequency voltage is in resonance with the cyclotron fre-

quency of a particular ion, the ion will gain energy and move

out in a spiral path, eventually striking the collector.

Any mass spectrometer may be used as a leak detector. How-

ever, those designed for leak detection are portable, rugged, and

must have the ability to remain tuned to the tracer gas signal.

Reference 9-i1 describes a mass spectrometer using two ion-

deflecting analyzers in series. Those ions which are gas-scat-

tered in the first analyzer, and which would produce a broad-

ened peak in a single-stage instrument, are resolved into sep-

arate peaks by the second analyzer. With operating pressure in

the spectrometer tube in the region of 10 -s to 10 -_ torr, the

background was three orders of magnitude less than in a commer-

cial single-stage mass spectrometer. It was therefore possible

to use an electron multiplier as an ion detector. A leak de-

tector which employs this principle has recently been manufac-
tured. The smallest detectable leak in this detector is in the

range of 5 x i0 -I_ atm-cc/sec.

Unusual problems are encountered with higher mass-specro-

meter sensitivity. Residual background from atmospheric helium,

diffusion of helium through glass, helium holdup from previous

testing, and helium accumulation in the associated vacuum-mea-

suring gages can present serious limitations. One of the most

significant problems is the handling of the item to be tested.

Leaks which a new machine would be capable of detecting can be
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easily - though temporarily - sealed by the grease and moisture
from a fingerprint.

One approach to the problem of reducing background signals
is embodied in an ion detector described by Daly in Reference
9-12. It can distinguish between helium ions and unwanted
"air" ions. This detector is used with a conventional single-
stage mass spectrometer. Its operation depends on the fact that
the penetration of low-energy-charged particles in aluminum is
proportional to the energy and inversely proportional to the square
root of the atomic number of the ion. The metal thickness can be
chosen so that the helium ion penetrates just to the back and
releases there a secondary electron, which may be used to record
the arrival of the helium ion in the foil. No signal will be ob-
tained from the N+ and N_ ions because of their failure to pene-
trate a foil of this thickness. A great reduction of background
can be achieved by this technique. This detector is not commer-
cially available at present, however.

9.4 TYPICAL MASS-SPECTROMETER LEAK DETECTOR

A mass-spectrometer leak detector comprises the following

major components:

i. High-vacuum pumping system for the analyzer system

2. Analyzer tube and its associated electrical circuits

3. Low-vacuum pumping system for roughing out the test
item

4. Cold trap for removing condensable vapors

5. Appropriate couplings or flanges for the attachment

of a test piece and qualified leak

6. Valves to control the flow of gases through the de-

tector

7. Leak indicator, such as a meter or audible signal,
or both

8. Vacuum gages

A typical vacuum system is shown in the functional diagram

of Figure 9-2.

9.4.1 High-vacuum Pumping System

A forepump and a diffusion pump are used to maintain a vacu-

um of i0 -_ torr or less in the analyzer tube.

Since hot organic diffusion-pump oils decompose near atmos-

pheric pressure, the system must be exhausted to a pressure less

than 10-* torr before the diffusion pump is turned on. Similarly,

it is important to shut off the diffusion pump first, and then

allow the oil to cool before turning off the mechanical forepump

or venting the diffusion pump to atmosphere.
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Ficure 9-2.
Mass Spectrometer Leak Detector Pumping System.

(Reprinted with permission from Analytical

Measurement Business Section, General Electric

Company, Schenectady, New York.)

The forepump, diffusion pump, and blower should be inter-

locked for maximum protection of the diffusion-pump oil. The

diffusion pump then cannot be turned on unless the forepump is

started. A thermal, self-restoring circuit breaker should pro-

tect the forepump while providing intermittent operation to

maintain vacuum in certain instances. The blower should be

fused in conjunction with the diffusion pump so that a failure

of the blower fuse will disrupt heating power to the diffusion
pump.

One manufacturer uses a detector with a novel pumping sys-

tem. Instead of a diffusion pump, chemical gettering is used.

It is claimed that by the preferential chemical reaction of the

residual gases, the concentration of helium in the analyzer tube

is increased. This is supposed to increase the inherent sensi-
tivity of this type of leak detector.

9.4.2 Analyzer Tube

The modern mass-spectrometer tube operates in a chamber con-

nected to a cold trap. Usually, the entire tube and detector

assembly is completely self-contained on a single, easily de-

mountable flange (Figure 9-3). All elements of the tube, in-

cluding magnets and filament, are self-aligning, eliminating

critical alignment problems. The entire assembly can be lif-

ted out for cleaning and parts replacement.

_

9-10



£

/

Figure 9-3. Analyzer Tube of a Modern Mass-spectrometer

Leak Detector. (Reprinted with permission

of the Analytical Measurement Business Sec-

tion, General Electric Company, Schenectady,

New York.)

Design of the tube is shown in Figure 9-4. A beam of elec-

trons from a heated filament is attracted by a small potential

difference toward an ionization chamber. The electrons pass

through a hole into the chamber. Electrons hit gas molecules

in the chamber and ionize them. The source magnet causes elec-

trons to travel in a helical path and increase the probability

of collision and ionization. An ion repeller ejects the posi-

tive ions out of the slit in the ionization chamber. An ion

lens, consisting of two focusing half-plates which can be

separately adjusted to the proper potentials, concentrates the
ion beam at the center of the slit in the exit plate. Use of

such an ion lens increases the intensity of the ion beam and

the sensitivity to an input sample of tracer gas.

9.4.3 Low-vacuum Pumping Sxstem

A mechanical pump, or some similar device, must be provided

for roughing the test item to low enough pressures to transfer

it to the leak-detector system. Some mass-spectrometer leak de-

tectors incorporate an automatic test station that changes valve

positions at preset pressure levels. The test item is evacuated

to some preset value; then the test valve opens automatically

and the roughing valve closes. After completion of the leak test

the test valve closes and the test item is automatically veDted

to the atmosphere.

9-11



Collector
Plate

Suppressor M w_

Plate To J801 ....

Ground /

Plate

Source

Magnet'

Ionization

Chamber

°:°:

LEGEND /_!_o:-• GAS MOLECULES

• Et ECTRONS Ion

• IONS Repeller

Anolyzlng

Magnet

Exit
Plate

FOCUS

t Ion
Source

Filament

Figure 9-4. Operation of Modern Mass-spectrometer

Analyzer Tube. (Reprinted with per-

mission from the Analytical Measure-
ment Business Section, General Electric

Company, Schenectady, New York.)

9.4.4 Cold Trap

The purpose of a cold trap in a vacuum system is to remove

gases and condensable vapors of water and oil. The vapor pres-

sure of water at 20°C is 17.5 torr, but its vapor pressure at

liquid-nitrogen temperature (-196°C) is approximately 10 -Is torr.

The lower the temperature of the trap the more effective it is in

reducing pumping time and assuring a clean vacuum system. The

recommended refrigerant is liquid nitrogen. Liquid air, though

equally effective, may present an explosion hazard, because of

its liquid-oxygen content. Good vacuum practice requires that

the liquid in the cold trap be maintained at a reasonably con-

stant level. If the trap is neglected and allowed to go dry,

the operating efficiency of the leak detector will be impaired.

A high background pressure will develop and will shorten the
life of the filament.

If liquid nitrogen is not available, a slurry of dry ice and

alcohol or an inflammable solvent such as trichlorethylene may be

used. The boiling points of these materials are not so low as

that of liquid nitrogen, and their trapping effectiveness is less.
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A refrigeration unit manufactured specifically for leak-de-
tector cold traps is available. This unit uses the adiabatic ex-
pansion of compressed air as the refrigeration principle, and may
be operated from any clean compressed-air source.

The vacuum manifold connecting the test piece to the leak-
detector system usually incorporates several vacuum compression-
seal couplings. It is good practice to leave a standard leak in
one of these inlets so that a rapid qualification may be performed
before and after a leakage test.

9.4.5 Control Valves

Two high-vacuum, bellows-sealed control valves are usually

incorporated in the vacuum system. These include an inlet throt-

tle valve and a diffusion-pump isolation valve (see Figure 9-2).

The inlet throttle valve is especially designed with a

throttling plate that varies the size of the valve opening as

it changes from a fully closed to a fully open position. This

valve is used to throttle a gas sample from a large vessel or

from a test piece with large leaks so that the pressure in the

leak-detector vacuum system does not exceed a safe upper limit.

The diffusion pump valve provides a means of isolating the

diffusion pump from the vacuum chamber, cold trap, and mass-

spectrometer tube for servicing and maintenance. The cold trap

and mass-spectrometer tube can be removed for cleaning, the fil-

ament can be changed, and other maintenance functions can be per-

formed without shutdown of the diffusion pump and forepump.

A valve is available which permits two discrete detector

sensitivities while also allowing accumulation techniques of

leak detection. The sensitivity choke on the valve provides

a constant and fixed sensitivity increase, of a factor of about

three times, by changing the pumping speed through the spectro-

meter tube. Opening the valve two to three turns from its closed

position produces a fixed low pumping speed, which results in a

higher sensitivity. For faster pumping, this valve may be fully

opened and the choke lifted off its seat. The sensitivity and

pumping speed can thus be changed without disassembly and with

reproducible results. It is not necessary to recalibrate each

time the valve position is changed. However, it is important

that both calibration and operation be performed at the same

valve setting. Figure 9-5 shows an exposed view of this valve.

As an alternative to the two-position valve, it is possible

to use a permanent orifice to reduce pumping speed. Although

such an orifice would increase the system sensitivity, it would

also increase the system response time.

9.4.6 Leakage Indicator

The leakage indicator is usually a milliammeter which regis-

ters the amplified ion current. The detector usually has a multi-
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Figure 9-5. Exposed View of a Diffusion-pump Isolation
Valve. (Reprinted with permission of the
Analytical Measurement Business Section, Gen-
eral Electric Company, Schenectady, New York.)

position stepping switch so that the current range displayed on
the meter may be changed.

For the convenience of the operator, who may be unable to
see the output meter while he is probing the test system, a loud-
speaker, audio oscillator, and amplifier can be installed on the
equipment. An audible note is emitted whose pitch is related to
the meter reading and hence to the magnitude of the ion current;
that is, the pitch of the note rises when a leak is probed.

9.4.7 Vacuum Gages

Mass-spectrometer leak detectors usually employ two types of

gages; Pirani, or thermocouple, gages for pressures greater than
10 -3 torr, and ionization gages for pressures less than I0 -_ torr.

The Pirani, or thermocouple, gage indicates pressure in the fore-

pump line and shows when the diffusion-pump line may be opened.

The ionization gage is usually of the cold-cathode or Phil-

lips discharge type. This type of gage is more rugged and does

not contain a hot filament which could burn out if accidentally
exposed to atmosphere.

9.4.8 General Characteristics and Specifications
of Commercial Detectors

Table 9-1 lists the general characteristics of commercially

available mass-spectrometer leak detectors. Specific information
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regarding many of the available models will be found in Part III
of this Handbook.

A performance specification for helium leak detectors has
been issued by the Electronics Research Center of the National
Aeronautics and Space Administration (Ref. 9-13). This speci-
fication details such items as sensitivity, response time,
clean-up time, warm-up time, noise, and drift.

Table 9-1

COMMERCIAL MASS-SPECTROMETER LEAK DETECTORS

Characteristics

Sensitivity

Tracer gas

Output signal

Power requirement

Size

Weight

Price

Necessary accessory

Avera@e Values

1 × 10 -11 atm-cc/sec: 0.i part

per million helium in air

Primarily helium; also hydrogen,

argon, neon, butane

Millivolt meter or microampere

meter

i000 watts, 105/125 60 hertz AC;

220/250 60 hertz AC

Width = 25 inches, Height = 40

inches, Depth = 20 inches

500 pounds

$5oo0

Liquid nitrogen

9.5 LEAKAGE TESTING

The mass-spectrometer leak detector can be used in any of

the following ways:

i. Leakage measurement

• Steady-state

• Tracer accumulation

o Leak Location

• Tracer probe

• Detector probe

9.5.1 Steady-state Leakage Measurement

The steady-state method can be used on either evacuated or

pressurized systems, as discussed in Section 4.5, "Leakage Mea-

surement Testing."

The evacuated side should not contain volatile materials or

materials sensitive to vacuum, because the test space will be at
Z
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a pressure of 10-2 torr or less. The time required for this
test is not much greater than the pumpdown time required for
the evauation of the test item. The whole procedure can be
highly automated.

The leakage measurement testing of pressurized items in-
volves a time interval of about three hours per test plus a
similar time for calibration of the test system. Continuous

monitoring of the leak-detector signal is necessary with this
method.

9.5.2 Leakage Measurement b X Tracer Accumulation

Quantitative measurements using this method are subject to

much greater erroz than those of the preceding subsection (9.5.1).

Tracer gas is allowed to accumulate on the downstream side of the

leak, and subsequently the concentration of the accumulated gas

is determined. Section 4.6, "Tracer Accumulation Testing," dis-
cusses this method in detail.

With the helzum leak detector, a note of caution is advis-

able because this method can give false readings as a result of

outgassing from the test object (see Section 9.2, "Sensitivity").

When careful attention is given to detail it is possible to mea-

sure leakage rates smaller than 10 -11 atm-cc/sec (Refs. 9-14 and

9-15).

9.5.3 Leak Location -- Tracer Probe

Detection time with this method includes the time to evacu-

ate the test object and the time required to spray all areas

with tracer gas. Location of individual leaks using a fine tra-

cer gas stream can be very time consuming. Testing of a large

object may be initiated by loosely fitting a hood of vinyl plas-

tic around the object to retain the helium to determine if any
leaks exist.

In systematic leak checking, gas is sprayed on the top of

the component first, helium gas being lighter than air, and then

gradually down over all other suspected areas. This is done so

that the helium will not drift to an undetected leak and produce

a leak indication at the wrong location. The detection procedure
should be carried out in an area free from drafts and breezes.

9.5.4 Leak Location -- Detector Probe

Use of the detector probe (see 5.2.2.1) with the mass spec-

trometer results in a considerable loss in detection sensitivity
(about a thousand times less) over that attainable with a tracer

probe.

In the vicinity of a small leak, the rapid diffusion of he-

lium into the air causes a steep helium concentration gradient

to be established in the vicinity of the leak. When the probe
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approaches the leak area it samples the air-helium mixture. (It
is important that the probe's orifice be close to its input end.)
If the flow rate into the probe were high, it would sweep the
helium in. However, the flow is usually very low and has little
effect on the concentration gradient. If the probe misses the
leak by as small a distance as one-fourth inch, the sensitivity
will be reduced by approximately ten to one because of the steep
gradient in concentration.

To overcome the effect of the gradient, a small rubber suc-
tion cup can be placed over the end of the probe. When the cup
covers a leak during probing, the helium concentration begins
to increase in the space and will soon reach a detectable level.

Both the probing speed and the distance from the test ob-
ject to the detector probe are critical. Figure 9-6, reprinted
from Reference 9-16, is an example of the effect of probing speed
and distance on the sensitivity of the technique. The data re-
presents one manufacturer's results obtained under ideal labora-
tory conditions. Such high sensitivity cannot be obtained under

field conditions. At a probing speed of three feet per minute,

even under ideal laboratory conditions, the probe must be within

one-fourth inch of the leak to be able to detect and locate a

10 -_ atm-cc/sec leak. If a weld whlch is wider than one-fourth

inch is being checked for leaks, at least two parallel passes

must be made to check the weld completely.

For best sensitivities the leak detector should be operated

at about 1 x i0 -_ torr detector pressure. Lower pressures re-

sult in low speed and longer time constants, while at higher pres-

sures the inherent sensitivity of the leak detector begins to de-

crease. The use of long vacuum leads between the machine and the

probe should be avoided if possible. The additional volume cre-

ated by these leads adds to the time constant and, hence, reduces

the apparent sensitivity. Sensitivity is not actually reduced,

but slow response interferes with prompt detection of leaks as

the probe is moved over the suspected area.

When pressure-testing large objects, It is preferable to use

a short hose and to move the leak detector rather than to use a

long hose and a stationary leak detector. Response time increases

approximately linearly with probe length in the absence of adsorp-

tion and outgassing. That is, doubling the length should double

the response time. Actually, doubling the length will probably

double the outgassing rate and reduce the sensitivity.

Figure 9-7, also from Reference 9-16, is an example of the

effect of tubing length on the clean-up and response time of the

leak.

The most successful flexible hose to the probe is of the

metal bellows type, although rubber tubing (preferably neoprene)

is often used. The problem of sorption of helium can be ignored

if metal lines are used. Rubber vacuum hose readily absorbs the
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helium, removing it from the stream and reducing the sensitivity.

Later released, this helium a_ds to the helium background. The

complete removal of helium from a vacuum hose is a tedious pro-

cess and frequently requires several hours. Clean-up rate can be

improved by passing a dry gas through the line at a fraction of

a torr of pressure.

When using a detector probe consider the following:

i. The use of a specially shaped probe is sometimes ad-

vantageous. For example, a simple probe made by

attaching the flattened end of a piece of copper

tubing to a needle valve varies the suction through

the probe as described in Section 5.2.2.1.

2. The flow through the probe is sometimes too large to

be handled by the pumping system of the leak detector.

Then an auxiliary pump must be used, although this will

reduce the detector sensitivity.

3. The sensitivity can be increased by placing a boot over

the end of the probe.

4. After testing in one location, the probe may use up

all the helium issuing from a leak there. The probe
should be removed until a detectable concentration of

helium has built up again around the leak.

The test object should be kept out of drafts to allow

helium to build up in a concentration around a leak.

The minimum detectable conductance of a leak can be

changed by pressurizing the vessel to be tested. If

such an increase in pressure implies too great an ex-

pense in tracer gas, the gas may be diluted, but with

some loss of sensitivity. For example, if a system

pressure is increased by a factor of i0, the flow

through the leak, providing it is laminar, will in-

crease by a factor of i00. Decreasing the tracer-gas

concentration by a factor of i0 will decrease the sen-

sitivity only by a factor of i0.

.

So

The relative sensitivity of the probe technique may be es-

tablished by placing the probe near a calibrated leak which has

been pressurized, at a known pressure, with helium. The leakage
indicator on the leak detector is read and the distance of the

probe from the calibrated leak noted. Indicator readings are
obtained for several spacings and a curve obtained of metec re-

sponse versus spacing plotted. The curve is then extrapolated

to find the meter indication that corresponds to zero spacing.
This is the indlcation that would be obtained if the entire out-

put of helium from the leak were to be accepted by the detector

probe. The relative loss in sensitivity arising from moving the
probe away from the leak varies as the ratio of the meter indi-

cation at a given distance to that at zero distance. The maximum

sensitivity of the detector is reduced in this same ratio.
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9.6 OPERATION AND MAINTENANCE

The specific steps involved in using a commercial leak de-
tector will differ from model to model and from manufacturer to

manufacturer. Details of operation for each model are usually

spelled out carefully by the manufacturer. Maintenance problems

are generally minimal. The openings for air circulation through

the cabinet of the leak detector should not be blocked. Vibra-

tion of the unit should be avoided. A maintenance schedule

should be set up for changing both the mechanical- and diffusion-

pump oils. Gasketed joints that are disassembled periodically --

such as the flanges for connecting test objects, the liquid ni-

trogen trap, and the standard leak -- should be inspected on

disassembly. Spare parts -- such as filaments, gaskets, and

certain electronic parts -- should be kept on hand. The manu-

facturer can provide a list of parts that are most likely to be

needed.

A great number of machine adjustments may be used to vary

the sensitivity of the leak detector. Zero adjustment will

change the sensitivity to some extent, as will internal pres-

sure variation. Perhaps the greatest effect on sensitivity is

the cleanliness level of the detector and the system being tested.

A philosophy needs to be developed for both personnel and

equipment. Leak detection is no better than the operator. The

following illustrate some of the established operator rules that
have been known to minimize maintenance and increase efficiency.

An operator should:

i. Refuse to test systems or parts which appear unclean

or which visually appear to have contaminants on

their surfaces -- i.e., oil, chips, lint, threads,

water stains.

2. Use only jigs and fixtures developed for specific

parts and standard setups.

3. Acquaint the supervisor or process control engineer

with any parts which have been damaged or appear ab-

normal in any way prior to its test.

4. Determine that the apparatus has been checked out by

the maintenance man before operating the detector at

the start of each shift. The maintenance check should

be recorded in a log book attached to each station.

5. Report all variations in machine performance to a
maintenance man.

6. Maintain all cold traps diligently.

The cleanliness of the detector can be greatly enhanced by

use of the nitrogen bleed technique described in Section 5.3.

This technique should be used whenever the system is left over-

night and use is anticipated the next day. Under no circum-

stances should the pumps of the leak detector be used for drying
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wet systems or evacuating dirty systems. Overnight use of the

nitrogen bleed technique keeps the leak-detector pumping system

unavailable to night-shift personnel who might not be knowledge-

able in its proper use.

No matter what the circumstances of vacuum testing, a reli-

able, informed operator is needed. Although most commercial leak

detectors are now almost completely automatic, some individual,

responsible for the equipment, its operation, and use, should be

familiar with the principles of vacuum technology. Helpful in-
formation will also be found in References 5-3 and 5-4. It is

desirable to check sensitivity at the start and at the end of a

work shift. It is also advisable when the detector is operation-

al, to rapidly check after each testing task by admitting tracer

gas into the detector through a calibrated leak.

The leak detector should be leak-tight when in uses It is

possible to locate leaks in the detector system by a tracer probe

technique, using the mass spectrometer itself to locate its own

leaks. When the mass-spectrometer leak detector is checked, a

leak may be indicated when helium is brought close to the exhaust

of the mechanical pump. This is caused by the high diffusion rate

of helium, which permits the gas to flow against the general gas

flow. The operator of the equipment should be aware that such

counter diffusion is a normal occurrence. False signals due to

this counter diffusion may be avoided by preventing large amounts

of helium gas from accidentally reaching the area near the mech-

ical pump.
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Section lO

HEATED-ANODE HALOGEN LEAK DETECTOR

lO.l INTRODUCTION

In a halogen leak detector, minute quantities of halogen

vapor enter a detector cell and are ionized catalytically on a

heated platinum anode. Ions are collected on an adjacent
cathode electrode at a potential which is negative with respect

to the anode. A current proportional to the rate of ion forma-

tion flows in an external circuit to produce an indication on

a meter. The rate at which ions are formed is proportional to

the halogen concentration in the gas which passes into the de-

tector cell. A unique feature of the detector cell is that the

ionization process can be accomplished in air at atmospheric

pressure.

The ionization process is specific to halogen vapors. The

halogens are chlorine, iodine, bromine, and fluorine. Materials

containing these elements are usually called halides. The most

common halide materials used in leak detection are those contain-

ing chlorine.

10,2 SENSITIVITY

Sensitivity of this instrument to R-12 vapor, for example,

can be as high as one part per billion of halogen in air, corres-

ponding to a leakage rate near 1 × 10 -9 atm-cc/sec. A vacuum-

operated halogen detector works at a pressure of 10 -I to i0 -_

torr and is capable of detecting halogen gas in concentrations

as low as 0.2 part per million.

Sensitivity of the detector varies wlth the different halo-

gen compounds. This variation is shown by Table i0-i, which is

reprinted from Reference i0-i. The velocity with which a halo-

gen-containing sample is passed through the detector cell also

affects the production of ions and, therefore, the sensitivity

of the cell.

The response of the sensing element changes markedly with

temperature. Below approximately 850°C, the emission current is

too small to be easily utilized. Above approximately 950°C it

becomes unstable. Random fluctuations in ion production occur

and can completely mask a leak signal.

The sensitivity of the detector unit will decrease as a re-

sult of prolonged exposure to pressures of less than 10 -3 torr.

Exposing the element to air for a while or bleeding a small
amount of air into the system should restore sensitivity.

If, after the leak detector has been used for some time,

there is a lack of sensitivity or there is erratic or off-scale

indication, the sensitive element must be removed and cleaned or

replaced.

10-1
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Table I0-i

SENSITIVITY OF HEATED ANODE HALOGEN LEAK DETECTORS

TO VARIOUS HALOGEN COMPOUND GASES

(Ref. i0-I)

Limited experimental data indicates that to give the same leak signal

as R-12, the leak rate of another gas will be the R-12 leak rate

multiplied by a factor as shown below.

Generic Name

Dichlorodifluoromethane

Trichlorofluoromethane

Chlorotrifluoromethane

Chlorodifluoromethane

Trichlorotrifluoroethane

Dichlorotetrafluoroethane

Sulfurhexafluoride

Methyl chloride

Perfluorocyclobutane

Perchloroethylene

Trichloroethylene

Carbon tetrachloride

Trade Chemical

Designation Formula

R-12, F-12 CC12F2

R-II, F-II CCIsF

R-13, F-13 CCIF _

R-22, F-22 CHCIF 2

R-II3, F-113 CCI_Fs

R-II4, F-II4 C2C12F_

FC-43

FC-75 C C1 F

SF6

CH3C1

Freon C-318 C_Fe

C2CI_

C2HCIg

CCl_

Approximate

Multiplying Factor

By Volume By Weight

1 1

1 1/4 3/4

35 40

1 3/4

1/6 ---

1 i 1/4

131 ---

30 i00

200 240

1 1/4 3

* It is believed sensitivity to this gas is one percent of R-12 (multiplier 100),
but supporting experimental data is not available.

** It is believed sensitivity to this gas is almost equal to sensitivity to R-12,
but experimental supporting data is not available.

I0.3 DESCRIPTION

Figure I0-i is a photograph of a typical heated-anode halo-
gen leak detector. This instrument includes:

• A two-element sensing structure, as shown in Figure
10-2 (see also Ref. 10-2). Vapor to be detected is

passed between two closely spaced cylinders. The

inner cylinder, or cathode, is kept red-hot by an

internal wire heater. The outer cylinder, or anode,

is operated at a negative potential with respect to
the cathode.
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Figure i0-i. Heated-anode Halogen Leak Detector. (Re-
printed with permission of the Instrument
Department, General Electric Company,
West Lynn, Massachusetts.)

ION-EMITTING

AIR OUT

S

I_![ ] t

AIR SAMPLE IN

Figure 10-2. Detector Element of Heated-anode Halogen

Leak Detector. (Reprinted with permission

from W.E. Briggs, A.C. Jones, and J.A.

Roberts, "Leak Detection Techniques,"

1958 Fifth National Symposium on Vacuum

Technology Transactions, Symposium Publi-

Cations Division, Pergamon Press, New

York (Ref. 10-2).)
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• Means of forcing a gas sample through the cylinders at
a constant low velocity.

• A basic circuit (Figure 10-3) containing a low-voltage
supply for the heater and a supply of a few hundred
microamperes at 50 to 500 volts alternating or direct
current for use as the interelectrode potential.

A-C
OR

D-C

I

HEATER.

OUTER

CYLINDER'_

INNER
CYLINDER

/\
v

C>..
./',,,

__

m

t
AIRFLOW

Figure 10-3. Basic Circuit of Heated-anode Halogen

Leak Detector. (Reprinted with per-

mission from W.C. White and J.S. Hickey,
Electronics, Vol. 21, March 1948,

McGraw-Hill Publications, New York.)

The ion current can be directly displayed on a microammeter

or a galvanometer. By another method the change in voltage across

a high resistance is utilized to operate an amplifier which, in

turn, operates a suitable meter or relay.

An audible tone can be obtained by adding a relaxati:_n-type

circuit which incorporates a capacitor and glow-discharge tube

with a loudspeaker as an indicating element. The current through

the sensing element builds up a charge in the capacitor. When

the voltage is sufficiently high, the glow-discharge tube fires.

The pulse of current resulting from the discharge of the capa-

citor produces a click in the loudspeaker. The repetition rate

of the clicks is an indication of the amount of current.

With any circuit used, it is desirable to include a protec-

tive resistor to prevent injury to the sensing element or indic-
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ating device which could result from an overdose of tracer gas

or a short circuit between electrodes.

Equipment modifications provide adjustable sensitivity, auto-

matic signal balancing, and special probe designs. An example

of the latter is an air proportioning probe for use in areas where

the background signal is unusually high. By the use of such a

probe the sensitivity of the test can be increased and the signal

stability improved. Use of the probe is described in Section 10.4.

Specific information regarding the models which are available can
be found in Part III of this Handbook.

10.4 GENERAL CHARACTERISTICS

The detector is designed specifically for halogen compounds.

Although halogen contamination in the atmosphere will sometimes

present a problem, the specificity leaves no doubt that only the

tracer gas will be detected. The response of the instrument de-

pends upon the halogen concentration. Up to one part per million

the response is linear. Between one and i000 ppm it is exponen-

tial, and above 1000 ppm the detector saturates.

The detector operates directly at ambient conditions, and

can be used without complex pumping equipment. It is relatively

cheap and portable, and can be used by inexperienced personnel

without extensive instruction.

The detector can be exposed to mists of the halogens, pro-

viding exposure is limited to a relatively short time. If the

sensing element is exposed to a halogen mist for too long a time,

or to a highly concentrated vapor, it may lose its sensitivity.

Prolonged operation at full temperature in a current of pure air

and with voltage between electrodes will restore sensitivity if

the contamination has not been excessive. The degree of contam-

ination varies greatly from one compound to another; for example,

carbon tetrachloride contaminates the electrodes more easily than

the other halogenated hydrocarbons.

With proper maintenance and operation the elements used in

industrial leak detectors can be expected to last 500 to i000

hours. The element used in a serviceman's type of leak detector

is much smaller and will not last as long. In general, little
can be done to extend the life of these units. The element used

in a serviceman's leak detector, however, is much lower in cost

than is the general laboratory instrument.

The halogen detector also responds to solid particles of the

iodides, chlorides, bromides, and fluorides. Therefore, it de-

tects smoke from burning materials containing such compounds.

The tobacco used in cigarettes must contain such a compound since

the detector responds readily to cigarette (and to some extent

cigar and pipe) smoke. A No Smoking rule should be enforced in

the test area. The detector also responds to solder fluxes,

cleaning compounds, and aerosol propellants. Such materials
must be eliminated from the test area.
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Rubber and plastic tubing must be avoided in any test sys-
tem. Halogen gases are easily absorbed by these materials and
may be released later to interfere with the test readings.

The inherent sensitivity of the halogen detector cannot be
reached in practice if there is background contamination. A
large leak near a small leak may completely obscure the signal
from the small leak. In many factory test areas, a background
level of halogen gas will build up because of leaks in the units
being tested, leaks in the refrigerant supply tank, dumping of
gas, and other sources that may allow halogens to enter the area.

The chief precaution in a test setup is to make certain that
the testing is carried on in an ambient that is sufficiently free
of halogen vapors. In many instances, an exploration of the
available floor space will indicate a location that is free of
these vapors. If such a location is not available, it may be
necessary to partition off a testing area and provide proper
ventilation to bring in halogen-free outside air. It should be
understood that the presence of halogen vapors in proportions of
ten parts per million may be sufficient to contaminate the air
enough to cause a loss of sensitivity in the testing equipment.

With the automatic balance feature, the control unit will
balance out a certain amount of halogen background, provided the
concentration is constant or changing slowly. If this background
level builds up to a point where normal air currents present in
the room cause sudden changes in background concentration, leak
signals may result even when the detector has not encountered a
leak.

There are three methods of combating this condition:

i. Eliminate sources of background
2. Provide a controlled environment of fresh air

in the testing area
3. Use a proportioning probe detector

For the first method, it should be possible to control in-
discriminate dumping of refrigerant charges, leaky lines, de-
greasers using halogen solvents, paint fumes, etc.

Manufacturers of refrigerators and air conditioners have
found it desirable to use the second method and construct
small room or booth for testing, since the background level of

tracer gas is usually very high in their production areas because

of the many sources of halogen gas. This room or booth is fed

fresh air from the outdoors at a very low velocity to prevent

excessive drafts and eddy currents of air within the room. The

booth, in effect, isolates the leakage testing area and helps

to keep background contamination from interfering. Fresh air is

introduced through the roof so as to provide an air change once

or twice a minute. A test booth is illustrated in Figure 10-4.

w_
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AIR INTAKE
FROM ROOF PEG BOARD

CANVAS CURTAINS

Figure 10-4. Controlled Atmosphere Test Booth.

(Reprinted with permission from
W.C. Hutchins, "Production Leak

Testing of Appliances," Home Ap-

pliance Builder, October 1961,

pp. 1-6 (Ref. 10-3).)

Some important facts should be kept in mind in construct-

ing a booth:

I. Fresh air should be supplied to the booth from the

out-of-doors. In some cases, this air should go

through an activated-charcoal filter bed to remove

any halogen gas that may be present.

2. The fresh air from the blower should be distributed as

it enters the booth so as to prevent drafts or eddy

currents of air within the booth. A false ceiling

made of peg board is ideal to provide an even flow

of air in the booth. When the booth is kept under

this fixed positive air pressure, contaminated air

will not come in from the shop or factory.

3. If a conveyor goes through the booth, canvas or rub-

ber curtains help to maintain the booth's integrity.

4. An air conditioner in the booth will be helpful in

providing comfort for the booth personnel and to

clear the air. It will, of course, also help lower

the humidity. Care should be taken to baffle the
air conditioner so that the cool air is distributed

as evenly as possible in the booth.

5. Construction techniques will vary. Some factories

fabricate the booth out of wooden studding; sheathing
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can be a type of hardboard or sheet rock. Others use
the movable metal partitions commonly found in offices.

The chamber of the charcoal filter should be large enough to
contain an ample amount of activated charcoal. The larger the
chamber, the less often the charcoal will have to be chan_ed.

Thought should be given to the ease of changing the charcoal fil-

ter. One way to contain the charcoal is to use a drawer, the
bottom of which can be a fine-mesh screen to allow air-flow

through the charcoal.

In many areas where the background level is much lower it

may not be necessary to use a special ventilating booth. A poz-

table 16-inch or 20-inch fan placed in a window or doorway near

the test area may be adequate. The fan will usually clear out

the halogen background to the point where leakage testing can

be accomplished satisfactorily.

Another method of overcoming the problem of high halogen

backgrounds involves the use of a proportioning probe. This

probe is so constructed that a supply of clean, halogen-free air
from an external source can be mixed with the test sample of

gas and passed through the detector. The proportion of clean

air to test sample is adjusted by means of valves. Clean air

can be obtained by filtering shop air through a bed of activated

charcoal, or tank nitrogen may be used (see Figure 10-5).

I FRESH

\\ \\\ \ \\\\\\\\\\\\\\\\\\\\

VOLUMEII]| SM,0,LL
BLOWER )IAMETER

DUCT

Figure 10-5. Fresh-air Ducting for a Propor_zu,_,,_ :zcL_

10.5 LEAKAGE TESTS

It is possible to use the halogen detector to test for liq'

uid leakage from sealed devices. The only requirement is that

the leaking fluid contain a halogen compound with a high vapor

pressure. In some cases it may be possible to add a halogen tra-

cer to the liquid and, by application of heat, to increase the

vapor pressure of the tracer.
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Packaged refrigeration machines are given a warehouse leakage
test by insertion of the probe of the detector through a hole
punched near the bottom of the carton. The accumulation of tra-
cer gas in the carton can be substantial, varying with the length
of time that the unit has been sealed in the carton (Ref. 10-3).

The halogen leak detector may be used for leakage measure-
ment or leak detection In a vacuum by inserting the detector head
directly into equipment having integral pumping systems. The op-
timum pressure for vacuum operation is between 10_ 3 and 10 -I torr
(Ref. 10-4). (In vacuum operation, the detector is somewhat sen-
sitive to pressure variation.) The best sensitivity will _be ob-
tained if the valve to the diffusion pump is throttled. If the
leakage is not large enough to maintaln the optimum pressure, a
small air bleed can be inserted to do so. For checking leakage
in the forepump portion of the system, as well as in the high-vacu-
um chamber, the detector may be located just ahead of the fore-
pump.

When vacuum leakage-testing small items on a short time
cycle, the detector should be maintained in a ready condition
in a small vacuum system of its own. This is desirable because
of the large thermal inertia of the detecting diode. The sys-
tem should maintain the element at about 5 × 10-3 torr pressure,
and provide a small, steady flow of air through it to maintain
sensitivity. The units to be tested should be evacuated to a
pressure somewhat above that in the detector system, and a samp-
ling valve opened between the two before starting the leakage-
testing procedure. Great care should be taken to make all vacu-
um piping short in length and large in diameter, as the tracer
gas moves primarily by diffusion.

Sensitivity multiplication can be obtained in vacuum leak-
age testing by using pressurized external tracer gas, or allow-
ing accumulation in the system, or both. When the tracer probe
is used for leak location, probing should be initiated at the
bottom of the system. Movement should continue upward in a care-
ful pattern. If probing is done above an undetected leak, tracer
gas will drift down and provide a spurious signal.

Halogenated gases are about three times as dense as air.
Tracer gas emerging from a relatively large leak will flow into
all nearby nooks and crannies and remain for long periods of
time. Its presence in confined spaces may give "ghost" readings
up to twenty-four hours after the original leak has been repaired.
The nature and persistence of these "ghost" signals are highly
dependent upon the geometry of the stagnant pocket and the ven-
tilation around it. Pure halogenated gas in an open beaker will
be undetectable about fifteen minutes after it is filled. An
open-mouth Erlenmeyer flask, on the other hand, will contain de-
tectable amounts after sitting on a table top for twenty-four
hours or more. If the same flask were placed in a light breeze
near an open window the halogenated gas would vanish in a few
minutes (Ref. i0-i).
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The low diffusion coefficient of the dense halogenated tra-

cer gases must be considered in preparing a test procedure. In

order to produce a dependable signal at a leak,the tracer gas

mixture with which the system is charged must have uniform compo-
sition. Any blind passages in the system must be flushed with

well-mixed tracer gas; otherwise leaks in these cul-de-sac8 will

simply exude air and escape detection. Those not flushed will

remain at low halogen concentration for long periods, because of

the low _iffusion rate of tracer gas in air (about 0.3 mole per

square foqt hour per unit molar concentration gradient).

_he time required for a blind duct one yard long to reach

fifty percent of full halogen concentration (Ref. 10-5) is on

the order of three hours if diffusion alone is acting. Figure

10-6 shows the time required for various lengths of blind duct

to reach ten percent and fifty percent of open-end halogen con-

centration. Settling out of heavier halogen gas from an initially
well-mixed tracer gas is not significant.
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Figure 10-6. Diffusion of Halogenated Hydrocarbon R-12

in a Blind Duct. (Reprinted with permis-

sion from R.C. Quisenberry, Leak Detection

Techniques Improvement Study for Space Ve-
hicles, Second Formal Report, Ohio Univer-

sity, NASA Contract NAS8-2563, Athens,
Ohio, June 1963.)

The halogen tracer gases are soluble in oil. Although small

leaks are effectively plugged by oils, diffusion of the halogen
.... material through the oil permits detection of the leak.

The most popular tracer gases for leak detection are the

refrigerants R-12 (dichlorodifluoromethane - CCIaF2) and R-22

(monochlorodifluoromethane - CHCIF2). These gases are stored

I0-i0



as liquids under pressure; at room temper_tture they exert vapor

pressures of 70 pslg and 122 p_g. If the retr_gerant in the

cylinder is bled through a valve and introduced into a cha_,ber,

some or all of the Izqu_d w_,l VdpO[l::e CO tlll the chamber.

Liquid from tn? cylinder w111 cuntzn:,e to vaporize u,,cZl the

pressure In the gas c_%am.bor zs equal _o L},_ vapor p_essuz) ci_ed

above or untal no more la4uzd _s le:t.

During the vapo=zz._tzcn process these refrigerant gases cool

conslderably. If :he gases .,re vented into a rather large cham-

ber, the refrigerant cyl_nder :nay cool to the polnt where vapor-

izatio:: is _ntremely ' low. ZnouL,| thls occur, It mlght be ai_-

",isable to hasten vapor tzatlon try p£aclng t_ cy].lnder In a tank
of warm water. It Is frequently des_:a,,le to dilute these tracer

gaseG for the follow_ng reasons:

• Since R-12 and R-22 llquefy at 70 pSl q and 122 psig re-

pectzvely at room temperature, a pcessurzzed system be-

ing tested cannot have a re,rlgerant gas pressure great-

er than the_e pressure_. If leakaue testl-q _s tO be

d_,ne at higher pressures, then _ressur-ze_ a_" must be

added on top of the retrlqerant to ohtaln the desired

test pressure in the system. Thls d11utior with air

reduces the _ensit_v_cy zn p_opot_on to tlte decrease

in concentration; but a more than compensatlng Increase

in senszt_vzty Is reallzed heca_-_e _t Is v.rop_rt'.onal

to the squ_r_ of th= pressuze r_se, asstu.,zng laminar
flow governs tt:e leakage.

• If _ Is desirable to, measure the _eakeg¢ quantitatively,
the halogen concentrat'_cn :e.,c_ing the detector _ust be

relat,-vel7 low, less than one pa_t no,- mt[!_,:::_ to _tay
_'.thz: • the !'_n_ar rzn_: c_ _hc z.-.._Lru;,_enL.

• In teztzng large systems, the cost of the tracer gee

may be cons)d_raDie. IZ only l_rge leaks a_'e of _nter-

est, the dilution of the tracer gas will reduce the

overall cost and, as an added feature., d_'crease the

am_snt of background contam_natzen by the leaks.

10.6 _AFETY

The detection ezement of the haLegen leak detector operates

at temperature: o£ about 9_0_C (l_00'E'; and wlth potentials of
300 volts. The following safety preca_tlonc n_ust _o cbservud:

• Never enter an area where there is an explosAve vapor.
I£ there _s any question, _tr_t test the area w&th an

explosion meter.

• Hevvr test zn enclosed spaces, such as bearing housings,

ell tanMs, or p,plnj, w_thout _z_t testing wlth an
oxplosz_n motor,

• Since voLta._s as h_gh as 100 volts azu present,

the c,,_.e should _ _upt _ ground [_o_en_al .,;zth a

three-prong gt,;unded zeceptacle OZ other suitable
gzoundlng lead.

IReproduced from _best available copy.
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Section II

PRESSURE CHANGE METHOD OF LEAKAGE TESTING

II.I INTRODUCTION

Leakage testing by the pressure change method zs accomplished

by observing the change in pressure between the inside and the
outside of the contalnment vessel or structure under test. The

method is suitable only for leakage measurement and is used pri-

marily in the testing of large systems.

The use of tracer gas is non requlred, and instrumentation

is relatively slmple. The pressure gages on the system will fre-

quently be adequate; in other cases special dlfferentzal gages

designed for leakage testing may be necessary. Thls will depend

upon the accuracy required. Testing times are long, especially

when working near the l_mlt of sensltivlty of this method.

11.2 SENSITIVITY

In a pressurized system, sensitzvlty is dependent on the

minimum detectable change of the pressure fluctuation. In an

evacuated system sensztlvlty is dependent not only on the pres-

sure change which may be observed, but also on the degree to which

this pressure change is due to outgasslng. Removal of the out-

gassing factor causing pressure change will Increase the sensi-

tivity of the technique. However, the evacuation mode is a more

sensitive technique, because smaller changes in pressure can be

detected. This is an accumulation leakage measurement procedure;

therefore, sensitivity is largely dependent on the duration of

the test. In all cases, care must be taken to ensure that the

pressure indicating device is properly calibrated for the pres-

sure range over which _t wzll be used.

11.3 DESCRIPTION OF TEST EQUIPMENT

A suitable test device must be capable not only of withstand-

ing the pressure differential applied during the test but also of

indicating very small changes in pressure. The most sensitive

equipment available detects pressure changes by the movement of

a diaphragm which acts to unblance a capacitive bridge circuit.
Table Ii-i summarizes the characteristlcs of the available pres-

sure-change leak detectors. Speclfic information on this equip-

ment may be found in Part III of thls Handbook.

11.4 LEAKAGE TESTING METHODS

Measurement of leakage in either an evacuated or a pressur-

ized device usually requires knowledge of the volume of the sys-

tem under test. Change in pressure _s noted after some elapsed

time, and the system leakage calculated according to Equation

4-10, where V is the system volume.
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Table ll-1
COMMERCIALPRESSURE-CHANGEDETECTORS

General Characteristics

Sensitivity

Pressure range

Tracer gas

Output signal

Power source

Size

Weight

Price

Avera@e Values

1 × l0 -5 torr

3 x I0 -_ torr to l0 _ psi

None

Visual observation

115/230 volts, 50 to 400

hertz

Sensor: 4 × 4 × 3 inches

Electronic Unit: 8 × 8 x 12

inches

8 to 175 pounds

Up to $6000

When the system is complex and the enclosed volume difficult

to determine, the system leakage can be determined by the "addi-

tional-leakage" method of Hjerten, et al. (Ref. ii-i). In this

method the results of a normal leakage test are compared with

the measurements obtained with an additional known leakage which

is connected to the system.

Where the duration of the test is more than a few hours it

is possible that temperature variations may become significant.

The resulting pressure changes would introduce large variations

in the calculated leakage. The American Nuclear Society Stan-

dard 7.60, which is reproduced in Appendix B, describes a pro-

cedure for incorporating the temperature into the test method;

this is known as the "absolute-temperature-pressure" method.

The error propagated by the temperature variations can be

canceled by introducing a "reference system" in the test vessel.

Keshock (Ref. 11-2) found this method had significantly less er-
ror than the absolute method. He cautions that the reference

method as described in ANS 7.60 is not particularly useful, and
shows how reliable results can be obtained.

11.4.1 Vacuum Leakage Test Considerations

When leakage measurements are made on an evacuated system

the outgassing, or evolution, of absorbed gases may be expected

to occur. In some instances the pressure achieved during pump-

down may be limited by the outgassing. When an evacuated system

is isolated from the vacuum pump, the system pressure will rise.

If only outgassing takes place, then the pressure will rise

to a steady-state value, as shown in curve a of Figure ii-i. If

the pressure rise is due solely to a leak, then the pressure
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Figure ll-1. Effect of Leakage and Outgassing on a Pressure

Versus Time Curve
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change will behave in the manner illustrated by curve b. The
combination of outgassing and leakage is illustrated by curve c.
It is possible for outgassing to mask leakage. Therefore the
adsorbed gases must be reduced below the level of the average
deviation of the test.

To minimize outgassing, the system should be kept clean
and dry. Any oil or grease on the inner surfaces of the system
should be removed before testing. The system should not be ex-
posed to water or water vapor. Liquids having a measurable va-
por pressure should not be present in the system, since the sys-
tem pressure will rise to that pressure value.

Two ways to reduce outgassing in a system are: l) heating
the system under vacuum, and 2) use of a dry gas bleed (see
Section 5.3).

If the system being tested is isolated from the pumps, the
pressure rise due to outgassing will cease when an equilibrium
is established between the gases in the vacuum and those on the
system surfaces as is illustrated in Figure ii-i. It is there-
fore necessary to wait until this equilibrium is established be-
fore taking leakage measurements. The pressure rise may be con-
sidered as due only to leakage when the rise in pressure during
successive time increments is equal.

Many of the gases evolved during outgassing of a system are
condensable. If a liquid-nitrogen trap is placed between the
gage and the system wherein the pressure rise is being measured,
the pressure rise observed will be due only to leakage (air is
not a condensable gas under these conditions). Care must be
taken that an equilibrium value of pressure rise is obtained
when such a technique is employed. When the liquid-nitrogen
trap is first cooled, system pressure will decrease because of
the pumping effect on condensable gases by the trap. After
these gases have been condensed, the leakage measurement can be
started.

It is possible to discrlminate between outgassing and leak-
age by means of an auxillary vacuum hood, as illustrated by the
schematic drawing in Figure 11-2.

The technique involves two sets of readings. The first is
taken with the system under test evacuated in the normal manner,

and measurements made of the pressure rise over a selecte6 in-

terval of time. The hood is then lowered over the component,

and sealed on a suitable base. The hood is evacuated to appzox_-

mately the same pressure as the system.

A second measurement of pressure rise is then made. The

rise is now due to outgassing only, since there is no pressure

difference between the inside and outside of the system. The

arithmetical difference between the two rates gives the true

leak rate. It will be appreciated from the brief description
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that this method is most suitable for repetitive testing of stan-
dard components, where the provision of a suitable hood and an
additional pump station is justified by the saving in time. The
same pumping system can also be used to evacuate both the hood
and the system under test.

F_AUXILIARY HOOD

HOOD II

ISOLATING _u7

!

SYSTEM I
UNDER

TEST

:::_ GAGE

%
SYSTEM ISOLATING VALVE

VACUUM BREAK

% VA LV E

PUMP ISOLATING

.-_ VALVE

!

VACUUM PUMPS

Figure 11-2. Test Setup for Pressure Change Testing,

Using a Vacuum Hood

11.4.2 Volume Sharin 9 Method

The volume sharing method of leakage testing is applicable

to systems or parts of systems which do not contain their own

pressure gages. The arrangement is illustrated in Figure 11-3.

A leak-tight container of known volume, V 2 , is connected

between the known volume to be tested, V I , and a vacuum pump.

Valve A is located between the two volumes and valve B between

the container and the pump. A pressure gage, P, is located on

the container. The procedure for testing for leakage into V I is

as follows:

i. Pump both tanks to base pressure PI-

2. Close valve A. Allow leakage to enter V I .

3. After holding time, t_, close valve B and open valve A.

4. Allow pressure to equalize in both chambers at a

level P2. (P2 will be greater than PI if leakage has

occurred.)

-q-
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5. Calculate leakage rate Q where

Q = (Vz + v2) (P2 - P1)/tl (ii-i)

This method can be made highly sensitive since the holding

time can be arbitrarily lengthened. Vacuum components are some-

times isolated for days by this means to test for small leaks.

B

I

CONTAINER GAGE

V I

SYSTEM

BEING
TESTED

_, LEAKAGE

Figure 11-3. Volume Sharing Technique of Leakage
Measurement

II.4.3 Automatic Leakage Testing Methods

The pressure rise technique has been used in an automated

test setup (Ref. 11-3), where a carrousel-type vacuum lock was

developed for expeditiously locking the specimens in and out of
the test chamber (Figure 11-4).

The carrousel lock consists of an upper stationary steel

plate and a lower rotating steel disc. The rotating steel disc

contains eight pouches, connected with a small auxiliary pump

which keeps the pressure below 0.7 torr. Thus, any possible

leaking path to the high-vacuum chamber has only i/i000 of the

atmospheric pressure at its inlet. This reduces spurious leak-

age. With a test rate of 60 units per hour, all leakages of
2 × 10 -8 torr liters per second and higher can be detected.

The manometer, an ionization gage, is included in series with

a liquid-nitroqen trap.

11-6



SMALL OIL DIFFUSION PUMPS

COLD TRAP

MANOMETER

BULB '_ I I/ I

JAR F<R

"IN-LEAKAGE"
TESTS

FORE PUMP

RECTANGULAR
PLATE

DIRECTION
OF TURNING

8 POUCHES

ROUND DISC

FILL HOLE

PROTECTING
CHANNEL

TAP FOR
PRESSURISING
OR EVACUATING

JAR AUXILIARY
PUMP

Figure 11-4. Pressure Change Procedure, Using a Carrousel

Vacuum Lock. (Reprinted with permission from

B.W. Schumacher, Transactions, 1956 National

Symposium on Vacuum Technology, pp. 110-113.

Copyright 1956, Symposium Publications Divi-

sion, Pergamon Press.)

The samples are cleaned by washing in trichlorethylene.
They are then warmed on a hot plate to 80 - ll0°C in order to

remove moisture. The cleaned units are put into the pouches

through a filling hole in the upper stationary plate. A con-

nection with the auxiliary pump is first made following the

direction of turning in Figure 11-4, later with the forepump
of two small oil diffusion pumps, then with the first of the

oil diffusion pumps. This brings the pressure in the pouches
down to about 1 × 10 -5 torr. Then the pouch reaches the test-

ing position, and is connected with the second of the oil dif-
fusion pumps and the manometer.

If, in the testing position, a pressure of 2 to 5 x l0 -6

torr is reached, usually after 15 to 20 seconds, a test valve

is pressed down, interrupting the pumping. The manometer and

pouch with the sample form one closed chamber, and the manometer
is watched for a pressure increase.

ii-7

- °



A small amount of gas is usually given off by the walls of

the chamber and the specimen, causing a pressure rise of 0.5 to

2 × 10 -6 torr within the first few seconds, depending upon the

length of time the pouch has been cleaned by pumping at 10 -6 tort.

After 15 seconds it can usually be decided whether a small leak

is present or not. Larger leaks cause an immediate pressure in-
crease to 10 -5 or i0-_; the test valve is released as soon as

such a rapid rise occurs, so that the test chamber is not con-

taminated.

Before the test valve is released, the pressure in the test

chamber will be determined by the equilibrium between leak rate

and pumping rate. For large leaks, the equilibrium pressure is

in the order of 10 -_ to 10 -3 torr. If a leaking unit is left

in the test chamber long enough it will be emptied by the pump-
ing. Calculations show, however, that more than an hour will be

required to empty it so completely that it will no longer be

seen in the test. Thus, the apparatus can be used to test for
large leaks as well as small.

The limit of sensitivity is determined by outgassing. After
a period of pumping, the outgassing background will be in the

region of 1.5 x 10 -I° torr liters per second.

Because all but one of the test chambers are under vacuum,

not much gas is given off by the walls of the chamber. For a

pouch left under atmospheric pressure overnight, the outgassing

will be higher if the pouch is turned to the testing position

without some time allowed (e.g., ten minutes) for outgassing.

It is easy, however, to check the state of the pouches by a
blank test.

Another automated test uses a differential pressure drop

method in measuring leakage in sealed devices. (Figure 11-5 is

PRESSURE _ GROSS __
SOURCE -- LEAK

CHAMBER

,, _ TESTCHAMBER

I

l

l

I
i

DIFFERENTIAL
SENSOR

I

I
I

{_ REFERENCECHAMBER

Figure 11-5.
Differential Pressure Change Method of Leakage

Measurement. (Courtesy of Picatinny Arsenal,

Department of the Army (Ref. 11-4).)
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a schematic of the system.) The unit to be tested is placed in
the test chamber; the gross leak chamber is pressurized to test
pressure and sealed. After pressure measurement, the valves
leading to the test and reference chamber are opened. If the
pressure drops below a predetermined value, gas has entered the
unit being tested and the test is stopped. If the unit passes
this gross leak test, the valves are closed and the pressure dif-
ference between the test chamber and reference chamber is mea-
sured. The leakage is determined from the pressure drop in the
test chamber (Ref_ iI-4).

This technique gives rapld (30-second) measurements of leak-
age in the full range from gross leaks to 1 × i0 -_ atm-cc/sec.
Since it can be fully automated, skilled test personnel are not
required. Any test gas may be used, including air or nitrogen.

11_4o4 Leak Localizer

Gas companies use a modzfication of the pressurizing method

of leakage measurement to locallze leaks in gas mains (Ref. 11-5).

The gas mazn is tested sectlon by sectlon, from the inside, with

the leak locator. The leak locator consists of the following

parts:

i. A flexzble frame on which are spaced two rubber gas

bags joined wzth a rubber tube.

2. A dual rubber tubing of sufficient length to reach

from the bags to the control panel. One side of the

dual tublng extends through the ad3acent bag and is

open to space between the two bags. This tube trans-

mits the gas pressure to the control panel.

3. A control panel connected to the dual tubing with an

inclined water gage is used to measure any variation

in gas pressure; a sprlng gage is used to indicate the

air pressure in the bags; connections are included for

inflating and deflatlng the bags.

4. Two pumps are needed -- a pressure pump to inflate the

bags and a suctlon pump to deflate the bags.

5. A steel rod is required to propel the bag frame and

tubing along inside the main. The rod is connected

mechanlcally to the bag frame; it is of sufficient

flexibility to pass through a tap in the main, and of

sufficient stiffness to avold buckling when pushing

the apparatus inside the maln.

In testzng for a leak, the bags are inserted in the pipe

containing gas under pressure. They are spaced a set distance

apart on the frame, so they seal off a portion of main when in-

flated. Inflated with a pressure tire pump, the bags make a seal

with the inside of the pipe when under three to six pounds of

pressure. The gas pressure between the bags is registered on

the water gage as soon as the bags are in the main. When the

main is sealed off completely by both bags and there is no

11-9
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leak in the main between the bags, the pressure between the bags
will remain constant.

After a section has been tested, the bags are deflated with

the suction pump and moved forward a distance to permit an over-

lapping of test lengths. This is important because a leak could

be overlooked if a bag were to rest on the leak while making a
test.

If a leak is isolated between the bags, the gage pressure

drops as soon as the bags are inflated. To locate the leak more

precfsely, bags are deflated and moved together for half the ori-

ginal distance between them. If they still straddle the leak

they are moved forward or backward by smaller increments until

one of the bags just passes beyond the leak. The steel rod is

marked and the measurement can be transferred to the pavement
above.
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Section 12

FLOW MEASUREMENT METHOD OF LEAKAGE TESTING

12.1 INTRODUCTION

Flow measurement is a suitable method for leakage testing

on a wide variety of devices or systems where high sensitivity

is not required. The test consists of measuring the flow of air

or gas into or out of a device or system. Tests can be performed

by direct observation or by analyzing the pressure-time response

of the system.

12.2 SENSITIVITY

The sensitivity of this method is relatively low. The sensi-

tivity is dependent on the instrument used to measure the flow,

and is independent of the system volume. For example, the mini-
mum detectable flow out of a pressurized system is perhaps 10 -2

to i0 -_ atm-cc/sec, while the minimum value of flow from atmos-

pheric pressure to vacuum may be about I0 -z atm-cc/sec.

12.3 DESCRIPTION OF EQUIPMENT

Conventional flow-rate measuring equipment is often suitable

for conducting these tests, although several companies do offer

special devices for flow-type leakage measurements. General

characteristics of two such devices are summarized in Table 12-1.

Specific details can be found in Part III.

Table 12-1

COMMERCIAL FLOW MEASUREMENT DETECTORS

General Characteristics

Principle

Sensitivity

Tracer Gas

Output Signal

Power Requirement

Size

Weight

Price

Volume displacement

i x i0 -S atm-cc/sec

Nonspecific

Visual observation

None

Width = 3 inches; Height =

i0 inches; Depth = 6 inches

5 pounds

$ 350

Flow observation

1 x 10 -2 atm-cc/sec

Compressed air

Visual observation

None

Diameter = i0 inches;

Height = 30 inches

20 pounds

$ 99
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12.4 LEAKAGE TESTING METHODS

Of the many and varied applications of this method that are

in use, only a few typical procedures have been selected for pur-
poses of illustration.

12.4.1 Leakage of Sealed Devices

The flow measurement method can be applied to almost any

sealed item which can be placed in a close-fitting test chamber.

The chamber is sealed and a calibrated capillary is attached to

it as illustrated in the schematic drawing of Figure 12-1.

TESTING VOLUME I_ I I llll

r I
CAPILLARY

I I I

Figure 12-1. Flow Observation in Sealed-volume Leakage
Measurement

Movement of a plug of indicating fluid in the capillary
shows the presence of a leak. The leakage, Q, can be determined

from the time required for the plug to move a measured distance,

the diameter of the bore of the capillary, and the pressure in

the testing volume. A 1.5 millimeter glass capillary can be used

to measure leakage rates from 10 -2 to 1 atm-cc/sec, and a 0.5

millimeter smaller rates, from 10 -_ to i0 -a. The capillaries

are scaled off in convenient units for computing leakage rates,

and a stop watch is used for timing the movement of the plug.
Pipettes used for liquid measurement are convenient calibrated
capillaries.

The upper limit on leakage rate measurement is reached when

the liquid plug moves so fast that timing is difficult. The

lower limit is determined by the accuracy desired and errors

introduced by the adhesive and inertial forces affecting the
movement of the plug.

The errors due to starting inertia are minimized by the use

of a water plug about one millimeter long, and by timing the liq-

uid plug movement only after it reaches a constant velocity.
The error due to the adhesive forces of surface tension can be

minimized by coating the inside of the clean capillary tubing

with an organosilicon compound. This effectively prevents the

water from wetting the glass (Ref. 12-1).
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The system being tested may be either evacuated or pressur-
ized, and either sealed or connected to a pressure (vacuum)
source. Of course, care must be taken that leakage, if ob-
served, is not that from interconnections. This type of test-
ing may be performed against a standard to compensate for tem-
perature variations. In such a case, a second testing volume
is placed on the other side of the capillary.

One advantage in the construction of this type of equipment
is that there are no critical, leak-tight connections in the

test volume. This is because the system is operating at atmos-

pheric pressure. Even though a leak may exist between the test-

ing volume and the atmosphere, leakage does not occur because

there is no pressure differential; this is due to compensation

by the liquid slug.

12.4.2 Leakage of Sealed Systems

For large leaks, a flow measuring device such as a wet-type

gas meter or a rotameter may be used with accurate results. For

measurement over a wide range of leaks, a Delta-Vee Meter (Ref.

12-2), can be employed. This instrument, designed primarily for

determining leakage rates in hydraulic power systems, is schem-

atically illustrated in Figure 12-2. Columns A, B, and C are

REGULATED PRESSURE TEST

SOURCE SYSTEM

A

SHUT-OFF VALVES

Figure 12-2. Delta-Vee Meter for Leakage Measurement.

(Reprinted with permission from George

C. Marshall Space Flight Center Confer-

ence on Leak-tight Separable Fluid Con-

nectors, Huntsville, Alabama, March

1964; L.E. Grimes, "Laboratory Leakage

Measurement Techniques on Separable
Connectors.")

capable of withstanding extremely high pressures. Tubes B and

C are of different diameter; various leakage rates may be mea-

sured by selecting the proper tube. When all of the valves are

open and the test-component is pressurized, the level of the in-

dicating fluid remains stationary. When the valve in the main

line between Columns A and B is closed, leakage is indicated by
the fluid moving up in Column B or C.
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Another leakage test instrument for hydraulic systems (Ref.
12-3) provides automatic measurements. The meter is installed
in the line between a test item and a source of high-pressure
fluid, such as an accumulator which replenishes make-up fluid
to the component. Flow in the line between meter and component
represents leakage. Flow is measured by the displacement of a
bellows, whose deflection is sensed by the change in resistance
of a potentiometer. Leakage is read directly on the meter as
cubic centimeters. Overall accuracy is claimed to be better

than three percent.

It should be mentioned that the above instruments will work

with gases as well as liquids, provided the indicating slug is

immiscible in the fluid. This makes the described techniques
extremely useful for testing under operational conditions.

Another variation of this method, which can be used to leak-

test pipelines and other large volume units (Ref. 12-4), involves

connecting the line to a pressure regulator and a bubbler. The

line is plugged off at its end, and air pressure is passed through

the bubbler to fill the line. If the line is tight, bubbling
will cease.

In a similar procedure a public utility has developed an
indicator for localizing gas leaks in gas-filled cables (Ref.

12-5). The instrument is essentially a U-tube manometer with

appropriate valving. With the manometer installed in a segment

of the line and the line pressurized, oil will rise in the glass
tube toward the leak.

Leakage of an evacuated system can be measured by means of

a flow meter. The system is evacuated through an isolation valve,

with the exhaust of the pump going through a surge tank to a flow

meter (see Figure 12-3). The isolation valve is first closed,

SYSTEM

UNDER "

TEST

ISOLATION BYPASS

1
| !

SURGE

TANK

FLOW METER

Figure 12-3. Pumping Technique of Leakage Measurement
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and tightness of the pumping system as determined by measurement
of flow through the flow meter. The isolation valve is then
opened and the flow readings taken after an equilibrium has been

achieved. The pressure in the system during test is adjusted to

specified conditions by means of a bypass valve. The lower limit

of pressure for which the pumping technique is useful is roughly

25 torr. The lower limit of sensitivity is approximately 8 atm-

cc/sec, and is mainly dependent on the availability of suitable

flow meters.

12.4.3 Leakage of Contlnuouslx Pressurized S_stems

Leakage measurements have been obtained on a pressurized

system by observing a change an the duty cycle of the compres-
sor when it is set to maintain a speclfled pressure in the sys-

tem (Ref. ii-I). If it is desired to measure the absolute value

of leakage by this means, the capacity of the compressor should

be known, or determined in a separate callbratlon test.

For this test technique, two stopwatches and a good pres-

sure gage are required. The compressor as allowed to charge

the system up to its normal delivery pressure. Then the compres-

sor control valve as shut off and the compressor is left under

no-load until the pressure in the vessel falls off to a suitable

value below the initial delivery pressure. When this limit, P0,

is reached, one stopwatch as started and the compressor is put

under load by manual operation of the control valve. The first

watch is stopped when the pressure has risen to a predetermined

value, P_. The second watch is then started and the compressor

output is cut off. When the pressure falls off to the original

value, Po, the compressor is again put under load; the first

stopwatch is started again, and the other as stopped. In this

way, a new cycle Is initiated. The time intervals representing

load and no-load conditions are recorded. Changes in these in-

tervals with time indicate loss of fluid from the system.

Several cycles are carried out an succession to obtain good

accuracy. Since no gas is added to or withdrawn from the sys-

tem, only leakage will cause a change in pressure. Should the

compressor be equipped with "dead-space regulation," provision

must be made for the compressor to discharge to air during no-

load periods.

This method has the advantage of requiring only very simple

equipment. Its accuracy as less than that of more direct methods

and it is subject to random errors, caused, for instance, by de-

fective compressor valves.

The tests should be performed, if possible, on a compressor

which gives charging tames at least as long as the leakage times.

It is not advlsable to operate the compressor under part-load

conditions, since its delivery capacity is rarely determined with

the same accuracy for lower loads as for full load. Compressors
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with dead-space regulation have a part-load capacity which may

differ in a compressor calibration test, and in a system leakage

test, if the quantity and temperature of the cooling water are
different in the two cases.

12.4.4 Pressure-time Response

Leakage of air into an evacuated system may be determined

by either of the following methods:

8 Pump the system down to an equilibrium pressure. Sub-

tract from it the pressure due to outgassing deter-

mined in a leak-free system of the same kind (refer

to Section 11.4).

• Derive an allowable pressure-time curve for the pump-

down of a system. Systems deviating from this rela-

tionship are considered to be leakers.

In evacuating a system, the gas which is removed may come

from the free air in the system, outgassing of the walls and

other surfaces, or leakage. The change in pressure with time

as the gas is removed can be expressed by Equation 4-10 where Q

is the total gas flow from the system of volume V. Then Q/V is

the rate of pressure change, dP/dt. Outgassing may be reduced

to a negligible value by cooling the walls of the system with a

refrigerant, or liquid nitrogen may be placed in a reservoir in-

side the system (Ref. 6-6). The value of Q will be the amount

of the leakage, QZ, less the amount removed by the pump, S.

Equation 4-10 takes the form dP/dt = (Q£ - SP)/V, which may be

integrated to give:

IQ£ = (t2 - tl) (12-1)

SP 2 S

£n Q£ SP _ -

When Q£ is very small, as for a leak-free system, Equation 12-1
becomes

£n _ - _ (t2 - t,} (12-2)

Pressure-time response is obtained by recording the time

and pressure as the system is evacuated. A plot of £n (P2/PI)

versus time should be made° A straight line of slope (-S/V)

will be obtained for a leak-free system. A curved line asymptotic

to a pressure value P = Q_/S results for a leaking system_ The

particular pressure value is a function of the time constant of

the system (see subsection 4.5.2).

With either of these procedures, it is possible to set up

an automated leakage test station such as the carrousel described

in literature (Ref. 11-3). The chief difficulty with this type of

test is the interference from the outgassing of dirty samples.
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Section 13

BUBBLE EMISSION METHOD OF LEAKAGE TESTING

13.1 INTRODUCTION

Bubble emission from leaks is observed after pressurizing

a device or system with a gas (such as air) and covering the sus-

pected leak area with a liquid. The test object can be completely

immersed or portions of the object can be covered with liquid.

The method Is slmple to apply and requires little skill on the

part of the operator.

Bubble emission is useful for locatlng leaks larger than

i0 -_ atm-cc/sec. Smaller leaks may be temporarily clogged by

the liquid; some leaks are intermittent and may easily escape

detection. The air which is dissolved in the liquid frequently

forms bubbles on the test object, thereby interfering with the

observation of leakage bubbles.

The size and appearance of the bubbles are critical in es-

timating leakage rate. For example, DeCastra and Wells (Ref.

13-1) establish three classes of bubble dimension and appearance.

Class 1 appears as small, uniform, long persisting bubbles. This

class implles a leakage range of 10 -_ to i0 -i atm-cc/sec. Class 2

appears as a mixture of random-size bubbles that are moderately
persistent. This class implies a leakage range of 10 -l to 1 atm-

cc/sec. Large, fast forming bubbles of short persistence con-

stztute Class 3. The implied leakage range is between 1 and I0
atm-cc/sec.

13.2 SENSITIVITY

Bubble-emission sensitivity increases with the pressure dif-

ferential applied to the test device and with the care taken by

the operator. The usual sensitlvlty of i0 -_ atm-cc/sec may be

improved to i0-' atm-cc/sec by the use of special fluids, adequate

illuminatlon, and the use of optical magnification (Refs. 4-17 and
13-2).

13.3 DESCRIPTION OF EQUIPMENT

Equipment for bubble-emission leakage testing consists of

suitable liquzds and a source of compressed gas. While water

alone can be used, the addition of a wetting agent makes bubble

detection easier. Certain liquid fluorocarbons have the advan-

tage of drilning quickly; they are inert, and leave no residue.

Table 13-1 lists the average characteristics of test liquids.

For description of the individual liquids see Part III.

13.4 LEAKAGE TESTING METHODS

The formation of bubbles, resulting from leakage of gas in-

to a liquid, is dependent not only on the pressure conditions but
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Table 13-1

COMMERCIAL LIQUID-APPLICATION FLUIDS FOR BUBBLE TESTING

General Characeteristics

Sensitivity

Tracer Gas

Container Size

Price

Avera@e Values

1 x i0 -_ atm-cc/sec

Nonspecific, any compressed

gas

4 ounces to 55-gallon drum

70 cents/4 ounces to

$5 /gallon

also on the physical properties of the liquid and of the gas.

Thus, by a suitable combination of liquid and gas, the size of
the bubbles and their rate of formation can be modified. For

purposes of leak detection and location it is desirable that the

bubbles should be readily apparent. The sensitivity of the pro-

cedure is determined by the ability to observe bubbles formed at

the outlet end of small holes and passages. It is possible to

change the sensitivity of the test by changing the test gas.

The rated leakage of the test gas may thereby be increased; this

does not imply a change of the conductance of the leak.

When the liquid does not readily wet the solid surface

around the orifice, the bubble rim tends to spread away from

the orifice, resulting in larger bubbles. Larger bubbles are

formed in the presence of any conditions which tend to inhibit

wetting, such as traces of grease.

For a given gas flow rate, the production of larger bubbles

reduces the bubble frequency, the frequency being inversely pro-

portional to the cube of the bubble radius. For a given leak,

the bubble frequency of a low surface tension organic liquid

may be I00 times the frequency of bubble formation in water.

13.4.1 General Procedure

In one method a high-pressure gas line is connected to the

component. Compressed air can be used, provided it is obtained

from a cylinder. Compressed air from pipe lines is not recom-

mended, since dirt and oil contamination is generally present

and is likely to block small leaks. Pressure should be applied

to the test unit before liquid application or immersion so that

the liquid will not enter small leaks; much higher pressure is

needed to detect a leak once it has been clogged with liquid
(see Section 6.6).

Another method is to place the component in a container of

liquid and to reduce the pressure on the liquid in the container.

This method can give pressure differentials up to one atmosphere

if the pressure inside the component is atmospheric.
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From the standpoint of time and equipment, the results are
superior to those obtained with the heated bath which is dis-
cussed below. Caution must be exercised in the performance of
a vacuum-type test to ensure that the pressure above the bath
does not fall too low, causing the bath to boil. When this hap-
pens, streams of bubbles rise from the surface and are difficult
to distinguish from bubbles of leaking gas.

Still another method is to preheat the bath in which the
component is to be placed. As the temperature within the compo-
nent rises, the air inside will tend to expand and the internal
pressure will rise. The pressure differential created in this
manner will be in the range of a few pounds per square inch, as
shown in Figure 13-1. From the standpolnt of economy and rapid-
ity of testing this is the best method to use with small compo-
nents. Once the bath reaches the desired temperature, no fur-
ther adjustments are necessary, except those minor ones that may
be required to maintain a constant temperature. If the bath is
large enough, samples to be tested may be mounted on a rack and
all checked at the same time.

Although there are other ways of creating a pressure dif-
ferential, these three are the most commonly used in bubble
testing.

The liquid immersion procedure can be applied to a contin-
uous manufacturing process. For example, as the component parts
move along the production line toward final assembly, they can
be pressurized with dry air and then immersed in clean, hot
water baths. The water should be treated with a suitable sof-
tener to reduce surface tension and promote bubble growth, thus
increasing the sensitivity of the test. Operators in front of
large glass windows can detect leaks. The leaks can be tagged
and the unit returned for repairs and recycling through the dip
tank. One of the outstanding limitations of this test is the
amount of entrained air carried into the tank on the surface of
the units.

The side of the object being examined must be positioned
in the test fluid so that the bubbles will rise directly to the
surface. Obviously, the bottom side of any object being tested
(i.e., the side facing the bottom of the test container) will
tend to trap bubbles, decreasing the reliability of the test.

If the leak is small, the bubbles may be difficult to see
until the eye is adapted. A reading glass will be found of
great assistance (e.g., three-inch diameter giving a magnifica-
tion of two or three times at four to five inches from the ob-
ject). The glass will not reveal smaller bubbles, but will make
it easier to see the source of the bubbles. Good lighting is
essential and a dark background may be helpful. A small stream
of bubbles may be more easily detectable from above than from
the side.
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If large vessels have to be tested, immersion may be impos-

sible. Channels to contain the test fluid can often be built

around suspected areas. The system or section being tested may

be pressurized in numerous ways. Considerable ingenuity may

have to be exercised in making up special clamps and fittings

for sealing the component and attaching the air (or gas) hose.

Rubber sheeting and C-clamps are useful in these respects.

When it is not possible to immerse the test object, a small

quantity of soap solution may be applied directly to the sus-

pected leak area. A bubble-free solution should be applied

gently to preclude bubble formation during application. The
solution should be flowed rather than sprayed or brushed onto

the surface. The sensitivity of this technique is dependent
on the time and care taken to observe bubble formation.

Two cautions are in order:

• When testing flanges, threads, or any joint which has

a large exposure area, it is absolutely necessary that

the solution bridge the entire joint. Gas will invar-

iably slip out through the smallest plnhole which is
not covered.

• The second caution is in the choice of a suitable solu-

tlon. For high sensitivity it is necessary that the

film does not break away from the jolnt and that the

bubbles formed are not broken by air drying or low sur-

face tension.

Guthrie and Wakerling (Ref. 13-3) propose an idea that is

applicable to very large vacuum chambers. A volunteer equipped

with an oxygen mask is requested to enter the chamber, which is

pumped out to about three-fourths atmosphere. The man applies a

soap solution to the inside surface of the system and looks for

the formation of soap bubbles. Needless to say, the most care-

ful precautions must be taken during this procedure. The man in-

slde the vacuum system should be under observation at all times

so that any slgns of exhaustion or other difficulty will imme-

diately be apparent. A continuous and uninterrupted source of

oxygen must always be available. Also, every precaution must be

taken to preven_ any chance for the valve between the vacuum sys-

tem and the pumps to be opened wide by mistake. The real value

of the method lies in finding large leaks in parts of the surface

of a large vacuum system that are not accessible from the outside.

The method obviously has qulte limited application.

13.4,2 Liquids for Bubble Tests

Water, fluorocarbon liquids, mineral oil, and a silicone oil

are the liquids commonly used for immersion testing. A steady

stream of extremely fine bubbles appears in an oil bath. If water

is used, it must be treated to reduce the surface tension; this

reduces the bubble size and the tendency of bubbles to cling to

the surface of the component and build up to a relatively large
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size before breaking loose and rising to the surface. This means

that in water small leaks would require a long period of time

to produce a bubble that would be visible. A component would

most probably be passed as acceptably sealed before time was
allowed for a conclusive test.

A disadvantage common to tests using oil is the fact that

the components, after being tested, must be degreased to remove

the oil that adheres to the surfaces. A silicone oil bath is

particularly expensive to use, because the oil clings to the

component after immersion and cannot be completely recovered.

In addition to fluorocarbon liquids, methyl, ethyl, or iso-

propyl alcohols may also be used as test liquids. The one ad-

vantage in the use of these materials that is not found with the

other fluids is their cleaning ability. Not only is the degreas-

ing process eliminated, but they also clean foreign matter from

the body of the component. After the component is removed from

the bath, the rapid evaporation rate of these liquids leaves the

surfaces clean and dry.

Alcohols should not be used in the heated bath procedure be-

cause of their toxicity and flammability. Adequate ventilation

is required to prevent poisoning or eye damage from the vapors.

A soap solution for leak detection by topical application

may be prepared from equal parts of corn syrup, liquid detergent,

and glycerin (Ref. 7-1). The solution should not be prepared

more than twenty-four hours before the test, and bubble formation

properties should be checked with a sample leak every half hour

during the test.
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Section 14

USE OF RADIOACTIVE TRACERS IN LEAKAGE TESTS

14,1 INTRODUCTION

Radioactive isotopes are used as tracers in the detection

and measurement of leakage. Only a very small quantity of

radioactive material is needed to load the system or item

which is to be tested. The nuclear radlatlons from leakage

of the radioactive material are detected by means of special

electronic instruments. Uses of such radloactive leakage tests

are varied, with the applications ranging from the production-

line testing of small sealed components to the testing of pipe-

line systems.

14.2 SENSITIVITY

The sensitivity of this technique may be as high as l0 - I_

atm-cc/sec under ideal operating conditions. To attain these

conditions, the soaking and counting tlme must be selected for

high sensitivity, and the units being tested must be of a "clean"

construction, with no possibility of adsorption of radioactive

material on the outer surfaces. A practical value of 10 -l_ atm-

cc/sec is the sensitivity to be expected under routine test con-

ditions.

14_3 EQUIPMENT AND MATERIALS

For conducting leakage tests in the field, conventional

scintillation counters or Geiger tubes are employed. When leak-

age tests are performed on a mass-produced item, the test pro-

cedure frequently used is that known as the "Radiflo" method.

The Radiflo equipment is automated and its operation is ex-

tremely simple. However, since the use of radioactive material

presents a potential danger, the operators and supervisory per-
sonnel must take a course in instrument operatlon and health

physics before they can be allowed to operate the equipment.

Although the initial cost of the detector is high, the main-

tenance and operation costs are low because almost all radioactive

gas is recovered. The procedure is economical when the number of

components to be tested range in the thousands per day. Radiflo
can be calibrated for leakage rate. The manufacturer gives the

following data for testing 5/16-inch transistors:

• Radioactive materlal costs $250 per i0,000 or 2-1/2

cents per transistor

• Activation labor is 15 minutes for i0,000 units

• Radiation check takes 0.16 minute per transistor
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Inglis (Ref. 14-i) describes the 100-percent acceptance inspec-

tion of propellant items; inspection rates of 200 to 500 pieces

per hour are claimed. Specific details regarding this type of

equipment may be found in Part III.

Radioactive materials used are usually gamma-emitting iso-

topes with the following properties:

• They must emit gamma rays of sufficient intensity to

be easily detected.

They must be available at a low cost with a suffi-

ciently high activity to permit the use of an inex-

pensive detector.

For example, radioactlve krypton-85 is used in the Radiflo

method of leakage testing. With a half-life of 10.3 years, this

material can be used over and over again if it does not become

too diluted with air or lost in the atmosphere. Only 0.7 per-

cent of the dlsintegrations give 0.54 megavolt gamma rays. The

primary usefulness of krypton-85 for leak detection is dependent

on this small proportion of gamma-emitting disintegrations. The

other 99 percent of the disintegrations are the less powerful

beta rays.

The half-life of 10.3 years is equivalent to 3.25 x 108 sec-

onds. One cubic centimeter of pure krypton-85 at normal pres-

sure and temperature will contain 2.7 × i0 _6 atoms which will pr O -

duce disintegrations at the rate of 5.78 _ 10 I° per second. Only

0.7 percent of these disintegrations, or 4 x 108 per second, yield

gamma quanta. Krypton-85 recelved from Oak Ridge National Labor-

atory contains five percent of the radloactive isotope. In use

this gas is further diluted with air or another gas for two rea-

sons: i) to give the gas the effective viscosity of air, and

2) to obtain a sufficient volume for filling dead spaces in pres-
surized containers.

Radioactive krypton-85, because of its chemical inertness,

does not participate in any metabol_c processes in the body if

inhaled or ingested in any way. If accidentally inhaled for a

short time, normal breathing of noncontaminated air will rapidly

remove any krypton from the lungs and body tissue into which

it might have diffused. With an adequate ventilating system,

proper gamma-ray shielding of storage tanks and reasonable care,

krypton-85 can be handled with negligible risk to the operators.

Many other radioactive materials are available for leakage

testing. A few of these are listed in Table 14-1.

14.4 RADIFLO METHOD

In this method of leakage testing, the components to be
tested are placed in a tank, which is then sealed and evacuated
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Table 14-1

MATERIALS USEDFOR RADIOACTIVE LEAKAGE TESTING

Element Compound Half-life Energy (Me@avolts)
Beta Gamma

Gas Leaks

Br _ CH3Br 36 hours 0.46 1.31

Xe I_ 5.3 days 0.35 0.08

Kr ss i0 years 0.70 0.54

A _ 1.8 hours 1.18 1.3

Rn _ 3.8 days None* None

C 14 CO_ 5600 years 0.16 None

Liquid Leaks

Na _ NaCI, NaHCOa 15 hours 1.39 2.75

As 7s (NH4 h AsO4 27 hours 2.96 1.2

1 I_ NaI 8 days 0.16 0.36

Sb1_2 (CsH6)s Sb 2.8 days 1.97 1.26

*Alpha emitter

to about two torr. Diluted krypton-85 is then pumped into the

tank under a pressure. The radioactive gas diffuses into exist-

ing leaks in the components. After a prescribed "soaking" period

(a few minutes to a few hundred hours), the krypton is pumped out

of the tank and stored for reuse. A suitable combination of kryp-

ton pressure and soaking time may be selected to give the desired

sensitivity. After this, an air wash is circulated over the com-

ponents to remove any residual krypton from the external surfaces.

The components are then removed from the tank. Those with leaks
will retain some radioactive atoms, which emit gamma radiation.

This radiation is detected by a suitable radiation counter, the

measured radiation being a function of the leak rate (Ref. 4-1).

Occasionally components with very large leaks (10 -s atm-cc/

sec) tend to slip through the leak test as acceptable. This is

due to rapid escape of the radioactive gas through the large

opening during the final pump-down phase of the test cycle. This
does not occur if the component contains any organic or other

adsorptive material. In the absence of such internal adsorptive

material, it is sometimes necessary to retain a slight partial

pressure of krypton in the pressurizing tank before its removal

for counting.

Alternatively, the components could be bubble-tested after

the Radiflo test; the bubble tests will detect these gross leaks.

Since the fluid used in bubble-testing will clog very small leaks,

bubble-testing should be performed only after Radiflo has deter-

mined that no small leaks exist.
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Disadvantages of the Radiflo technique are:

• Sample sizes limited to approximately one cubic foot

• Leaks cannot be localized

• Many organic materials will take up krypton-85 under

pressure, and will hold it for various lengths of time

after the pressure is released

Items to be leakage-tested frequently have adsorptive sur-

faces, such as organic coatings, or small areas of organic insu-

lation or gasketing. The radioactive gas adsorbed by these sur-

faces could make the item appear to be a leaker when, in fact,

it is not.

Radiflo is a classic use of the back-pressure testing de-

scribed in subsection 4.8.2. As explained in that section, very

large leaks may be overlooked because of rapid leakage out of

the system during pump-down. However, if adsorbents are present

inside the device, krypton-85 will remain inside the device.

Absolute leakage standards are not available because tests

are performed on sealed systems. Standards are available to

ascertain the activity of the test gas and the accuracy of the

test instruments, but test leaks to qualify the procedure do not

exist. There is even some question as to validity of the cor-

relation between the measured flow of krypton-85 and the amount

of air flow it represents. Clark, Jones, and Karoly (Ref. 14-2)

found that because of difficulty in predicting the flow mode in-

volved, leakage as measured by the Radiflo technique correlates

to only one decade with flow measured by the mass-spectrometer

leak detector.

Figure 14-1 is a schematic diagram of the Radiflo unit.

Programmed electronic circuity is used to assure the protection

of operating personnel from the radiation hazard. Both beta and

gamma rays are detected by means of a thin wall Geiger-Muller

counter. Krypton-85 adsorbed on surfaces will give readings of

both beta and gamma rays. However, the walls of the device will

adsorb any beta rays being emitted inside it. Therefore, it is

possible to distinguish by the beta-to-gamma radiation ratio

whether the radiation indication is due to adsorption or leakage.

I-. goes without saying that if radiation due to adsorption on

6xternal surfaces is large, small amounts of leakage will go un-
detected. Precautions must be taken to assure that all s_c_aces

are clean.

Routine checking of rejected parts by means of a thin-window

Geiger-Muller tube consistently reveals surface-contaminated parts.

Comparison of such rejected parts with acceptable parts of the

same surface composition will determine the significance, if any,

of the surface contamination. Those parts with significant con-

tamination can often be decontaminated by a brief exposure to heat.

Frequently, such a heating cycle is routinely incorporated into

the testing procedure of certain parts having organic coatings.
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For mass-production testing, an automatic counting station

will perform GO-NOGO testing functions at a rate from 600 to as

high as 2000 units per hour, depending upon the size of the part

being tested. Activated parts are placed in a shaker unit, auto-

matically fed into cups on a continuously moving conveyor, and

carried to a detector for analysis. A scaler measures and com-

pares the activity against a preset rejection threshhold. The

tested parts are then deposited in an appropriate "accept" or

"reject" bin.

14.5 OTHER METHODS OF LEAKAGE TESTING

Radioisotopes are used in leak location on very large sys-

tems where the usual methods would be extremely difficult to

apply. The advantages of radioisotope methods are their high

sensitivity, compatibility with any gas or liquid being used in

the system, and the fact that the tracer does not have to be re-

moved from the leakage site to be detected.

However, these techniques require experienced personnel to

handle radioisotopes, measure radioactivity, and interpret per-

tinent data. Moreover, the use of radioisotopes represents a

potential health hazard, and disposal produces more handling

problems than are encountered with other tracers.

Courtois and Gasnier (Ref. 14-3) have reviewed the proce-

dures using radioactive liquids, gases, and capsules.

14.5.1 Pipeline Testin 9

Pipeline leakage is frequently detected by means of radio-

active liquids or gases. A radioactive tracer is introduced in-

to the system with the filling fluid. The fluid escapes through

the leak, producing contamination in the vicinity of the leak.
The tracer can be detected at the leak after flushing the system.

The three stages -- filling, contamination, and detection --

can be accomplished in various ways. The pipe may be filled with

a homogeneous tracer or a slug (or puff) of tracer. With a homo-

geneous solution, the search can be carried out in a pipe under

constant pressure and with no flow. It is necessary, however, to

check the homogeneity of the product introduced and to remove a
considerable volume of tracer-contaminated fluid.

Alternatively, a "puff" of a radioactive tracer is in_ected

into the stationary liquid held between two scraper pistons, or

go-devils, in the pipe. Only a relatively limited quantity of

liquid is contaminated in this kind of tracing.

Detection may be at ground level, from the interior of the

pipe, or by probing. At ground level, which is, of course, the

simplest method, the detection team moves along the pipeline

equipped with portable radiation detectors. Heavy activity
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of the radioelement is requlred because radiation must pass through

a ground layer of conslderable thickness, often _ncluding a layer

of paving, cement, or other coverlngs. Thls method of detection

requires the use of very sensltive detectors; for example, sodi-

um iodide (thalllum act±vated) crystal scintillation counters.

In the case of gas leaks, considerable diffuslon of gas takes

place toward the surface. Diffusion is largely determined by the

nature of the ground as well as of the tracer gas. This reduces

the accuracy of locallzatlon, but permits the use of a radioele-

ment of lower activlty by reducing the distance between the tra-
cer and the detector.

It is posslble to probe for the leak from inside the plpe,

as descrlbed by Put_man and Jefferson _Refs. 14-4 and 14-5). This

procedure includes passing through the pipe a scraper piston,

or go-devil, whlch contalns the electronic detection system and

a "memory." As this detecting scraper is moved along inside the

pipe by the fluid flow it records any increase of activity in the

ground where contamination by leakage has occurred.

The great advantage of the pipe probe method is that it re-

quires only a low tracer actlvlty at the leak because the radi-

ation emitted need only pass through the plpe wall to reach the

detector. The actlvitles requlred are usually some 1,000 times

less than those necessary for detection from ground level.

Some of the practical parameters whlch limit the use of
this method are:

i. The pipe diameter must be sufficient to permit

passage of the detection electronlc device.

2. The bends of the pipe must be such that the scraper

piston, the length of which Is generally in the
order of one and a half tlmes the diameter of the

pipe, may pass through.

3. After the passage of the tracer fluid, the plpe must

be rinsed so as to be free from traces of activity.

4. The plpe must, insofar as possible, be free from ele-

ments likely to adsorb the tracer.

5. The suspension of the electronic detection equipment

and its memory must be able to absorb the consider-

able shocks to which the scraper _s subjected.

6. The detecting scraper must be absolutely _mpervious.

7. A number of small radioactive sources (e.g., Co 6°) can

be placed at certain distances along the pipeline.

The presence of these sources is recorded to make
easler the localization of the leak.

If detection from the inside of the pipe is impossible, the

thickness of the ground layer between the source and the detector

is reduced by digging holes and lowering the detection probe.
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For systematlc examinatlon, the holes must be very close together.

This kind of exploration would be possible only on very short

pipelines. It is often sufficient to probe only suspicious points
(connections, valves, etc.).

Various modifications of the methods described here have been

used. In one instance, a slug of radioactivity was introduced

suddenly and its rate of movement along the pipe followed. At

a leak there was a discontinuity in the flow rate of the slug.

This spotted the trouble, in another instance both ends of the

main were closed, and the isotope was introduced at the center.

The operator observed the dlrection the tracer flowed in the

pipe, to the right or to the left Then he bisected the offend-

ing section and tried again.

Still another modification involves the use of a sealed cap-

sule that has been tagged radioactiveiy_ Leaks are found by

placing a properly weighted radioactive capsule, or float, in

the fluid of a sealed pipe and allowing it to be carried by the

current° With normal exits closed, the only current is that of

fluid escaping through the leak. The float moves with the cur-

rent and stops at the leak. If the course of the piping has

been marked beforehand, a man with a detector can easily follow
the radioactive float.

When there are leaks of different sizes, the float often

goes to a large leak and stops. It may slow down, however, as

it passes a small leak, and an experienced observer can often

recognize such a change of speed. If no speed changes are ob-

served, the operator can locate and repair the largest leaks,
then reexamine the line for smaller ones.

Use of sealed capsules for leak location is advantageous

since smaller amounts of actlvity can be used and the active ma-

terial does not mix with the pipe contents or contaminate sur-

roundings. Further discussion of these methods may be found in

Gemant (Ref. 14-6) and Black and Kerwick _Ref. 14-7).
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Section 15

USE OF THE HALIDE TORCH IN LEAK LOCATION

15.1 INTRODUCTION

The halide torch is used to locate leaks in pressurized

systems filled with a halogen-containing gas. The burner heats

a copper plate with a flame that is a pale blue only if air is

pulled into the burner. If small amounts of vapor containing

halogen compounds come in contact with the plate, the flame
turns green.

15.2 SENSITIVITY

The torch permits locating leakages of about eight to ten

ounces of refrigerant gas per year, which is approximately one

hundred parts per million. This makes the general optical sen-
sitivity approximately i0 -_ atm, cc/sec. When an electronic

photometer is used to sense color changes, the sensitivity may
be improved to about i0 -s atm-cc/sec.

15.3 DESCRIPTION OF EQUIPMENT

The halide torch (Type i) consists of a burner connected to

a tank of halide-free gas or alcohol. A portion of the combus-

tion air is drawn into the flame (chimney fashion) through a

tube near the base of the burner. A flexible extension of this

tube is used as a probe to locate leaks (see Figure 15-1).

BURNER

HOLE TO VIEW FLAME

.COPPER PLATE

GAS CONTROL

VALVE

HALIDE-FREE GAS

(ACETYLENE)

AIR'INTAKE TUBE USED
TO SEARCH FOR LEAKS

Figure 15-1. Halide Torch for Leak Location
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The torch is available either as an attachment to portable gas

cylinders or as a complete unit with an integral fuel supply.

A more sensitive instrument, with direct-reading dials

(Type 2), can be obtained. Both devices are portable, easy to

operate, and of relatively small size. Table 15-1 summarizes

the characteristics of these items. A more complete description
can be found in Part III.

Table 15-1

CHARACTERISTICS OF HALIDE TORCH DETECTORS

General

Characteristics
Average Values

Type 1 Type 2

Sensitivity

Tracer gas

Output

Power require-
ment

Size

10 -4 atm-cc/sec

Halogen compounds

Visual

Halide-free fuel

15 inches x 4

inches diameter

Weight 1 pound

Price $10

i0 parts per mil-

lion;10 -_ atm-cc/

sec

Halogen compounds

Meter

120 volts, 60

hertz AC

15 inches × 16

inches x 9 1/2

inches

35 pounds

$675

15.4 LEAKAGE TESTING METHOD

To probe for leaks, the torch is lighted and checked for pro-

per operation by sucking in a trace of halogen gas from the tracer

supply tank. The surface of the system being tested is then

searched with the probe tube at the rate of a fraction of an inch

per second. Since the tracer gas has four times the density of

air, it is advisable to start work on the lower side of a possible

leak. A small trace of halogen gas will show up as a green flame,

a large quantity as a violet flame. Servicemen usually move the

probe about one-fourth inch per second to locate leaks down to

eight ounces per year. Although any halide gas could be used in

this test, Freon (CC12F2) is the best with respect to sensitivity,

vapor pressure, inertness, and safety.

Depending on the size of the vessel and the sensitivity de-

sired, the air may or may not be evacuated before the tracer gas

is introduced. Evacuation takes longer and is not practicable

for very small pipes; but if accomplished, it makes possible a

pure tracer-gas atmosphere that can later be pumped back into the

storage tank.
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In general, the halide torch test is as sensitive and rapid
as the soap-bubble test. In addition, the torch method permits
location of leaks in places where soap bubbles could not be seen.
There is no residue of water and soap to be removed before the
tested apparatus can be used. Freon is nonflammable, and once a
leak is found it can be soldered without fear of explosion.

The torch has no means of accurate calibration. It should
be realized that it is difficult, in a contaminated atmosphere,
to locate leaks smaller than eight or ten ounces per year even
when the unit to be tested is filled with one hundred percent
refrigerant gas.

A major drawback is the fact that the procedure consumes
oxygen and may give off enough toxic gas to make it unsafe in
confined areas that are not adequately ventilated. The open
flame may be a serious hazard in certain atmospheres. Therefore,
the torch should not be used in confined areas.

Carbon tetrachloride vapors are toxic; continued exposure
to them is dangerous. This material should never be used with-
out adequate ventilation. Persons using it should be carefully
instructed beforehand to ensure safety in testing.

A single large leak may mask adjacent smaller leaks, neces-
sitating prior location (and correction) of such larger leaks
by separate test. This procedure uses halogenated hydrocarbons
and is subject to diffusion and stratification problems.
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Section l 6

SONIC DETECTION OF LEAKAGE

16.1 INTRODUCTION

Leakage in either vacuum or pressurized systems may be de-

tected by means of the sonic energy generated in the fluid vor-

tices which accompany leakage flow. The only requirement is

that the sonic signal be of sufficient intensity to be distin-

guished from the background noise. Special tracer fluids are

not required.

Frequency of the leakage noise ranges from the audible to
the ultrasonic. Detection is accomplished by any of several

simple methods:

• Listening to the audible signal

• Electronic amplification of the audible signal

• Conversion of the ultrasonic signal to an electrical

signal of lower frequency

The ultrasonic component of the leakage noise is broadly peaked

at a frequency in the range of 30 to 50 kilohertz. Using the

third method above, such sounds can be easily detected, even

when the audible component is masked by a noisy background (Ref.

10-5).

Sometimes normal flow of fluids through a pipe will give an

input to the instrument, making it useless except under static
conditions. At other times the ultrasonic energy is reflected

from hard surfaces, posing a problem in establishing the exact

location of a source if the operator cannot get close to it.

This requires some experience on the part of the operator to

quickly recognize whether he is intercepting a direct wave or
a reflection. The ability to recognize the direct and reflec-

ted waves can be readily acquired and is not a serious problem.

16.2 SENSITIVITY

This method has a sensitivity of approximately l0 -3 atm-cc/

sec -- a relatively large value of leakage -- under conditions

of turbulent flow. Laminar flow will not produce a usable signal.

16.3 DESCRIPTION OF EQUIPMENT

To aid in the detection of audible signals an industrial

stethoscope can be used. When these signals are too weak to be

heard, an electronic stethoscope with an amplifier may make them

audible.

Ultrasonic sound-detector probes are of two types: the di-

rectional probe, and the contact probe. The directional probe,

16-1
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or transducer, has a horn with which the operator scans an area

and locates a leak, in much the same way that a radio direction

finder is used to obtain radio bearings. One unit has a direc-

tional pattern that is 22 degrees wide at -3 decibel points. The

short wavelengths of the ultrasonic frequencies make it possible

to design highly directional horns that are small in size and

convenient to use. Use of a parabolic dish permits a directivity
pattern of a fraction of a degree.

The contact probe is used in the location of internal leaks

in hydraulic systems and requires direct contact with the compo-

nents of the system. The ultrasonic energy produced by the mov-

ing fluid is conducted through the valves, tubing, or vessel

walls. Thus it is possible to detect leakage and changes in the

flow conditions that are usually difficult to locate without dis-

connecting lines and partially disassembling the system. The

detector is portable and can be used as a leakage locator with

either the directional or contact probe. For production-line

operation the detector units can be equipped with alarm or relay

circuits (Ref. 16-1). Figure 16-i is a functional diagram of a
typical ultrasonic leak detector circuit.

TRANSDUCER

35000 -

45000 Hz

AMPLIFIER MODULATOR

T
OSCILLATOR

40000 HZ

AMPLIFIER

LOUD

SPEAKER

0- 5000 Hz

Figure 16-1. Block Diagram of an Ultrasonic Leak Detector.

(Courtesy of Hewlett-Packard Company,
Delcon Division.)

The electrical output produced by the ultrasonic transducer

is amplified and then translated into the audible range in the

modulator by the conventional mixing process commonly used in

superheterodyne radio receivers. These converted ultrasonic sig-

nals exhibit audible sound characteristics that are very similar

to their audible counterparts because of the same physical pheno-
mena (e.g., a leak has the hissing sound that is characteristic

of air escaping from a pressure vessel; friction has a scratching

sound that is characteristic of two surfaces rubbing together).

Table 16-1 summarizes the characteristics of these instru-

ments. Additional details may be found in Part III.

16-2



Table 16-1

CHARACTERISTICSOF SONIC LEAK DETECTORS

General
Characteristics

Output

Power require-

ment

Ultrasonic

Audible signal

and meter

Avera@e Values

Sonic

Audible signal

and meter

Battery Battery

Stethoscope

Audible

signal

None

Size 5 inches × 5 5 inches × 3

inches × l0 lnches× 3

inches inches

Weight 8 pounds 5 pounds 1 pound

Price $300 $i00 $20

16.4 LEAKAGE TESTING METHOD

McElwee and Scott (Ref. 16-2) describe the use of a stetho-

scope and a simple electrical amplifier to detect leaks by the

sound they generate in the audible range. This method involved

detection from the inside of pipes.

The injection of a sonic wave into a system was proposed by

Quisenberry (Ref. 10-5). Sonic energy emerges with the leaking

fluid and is detected by frequency shift and correlation methods.

With the aid of push rods and a protective tip for the trans-

ducer, it is possible to probe ducts for leakage by observing the

signal level as the probe is pushed along the duct. For example,

the leakage from underground transmission cables can easily be

located and the spot to excavate pinpointed (Ref. 16-3).

Calibration of sonic leak detectors is done by giving a brisk

squeeze to a small plastic "squeeze bottle." The sound may be
detected over a distance of 50 feet.

16-3



2"



17 .i

17.2

17.3

17.4

Section 17

LEAKAGE DETECTION BY ABSORPTION OF ELECTROMAGNETIC ENERGY

17-1
INTRODUCTION ................

17-3SENSITIVITY ................

17-3DESCRIPTION OF EQUIPMENT ..........

17-3LEAKAGE TESTING METHOD ...........

J9.2.





background components. Almost all hydrocarbons can be used in a

background of air and give results in the low ppm range of detec-

tion. Other gases which may be used are: carbon monoxide, sul-

fur dioxide, and the halogenated hydrocarbons.

17.2 SENSITIVITY

The infrared detector is in the same general class of appli-

cability and sensitivity as the heated-anode halogen detector.

These instruments are capable of a full-scale reading of i00

parts per million nitrous oxide in air. This implies a detect-

able limit of several parts per million. With an internal pump-

ing speed of a few cubic centimeters per second, these instru-
ments can detect leaks in the range of 10 -6 atm-cc/sec.

However, the response time of the infrared detectors is

twice that of the equivalent halogen system and they are at

least one decade less sensitive. Their prices are at least

twice those of a halogen detector.

17.3 DESCRIPTION OF EQUIPMENT

The available equipment is compact and rugged, suitable for

field tests. Optional features include audio or visual alarm

units which may be set for any point in the operating range of

the instrument. The leakage test system may be automated for

assembly-line operation.

An instrument as provided usually consists of a detector

probe, filter, analyzer, flowmeter, metering valve, and pump.

The valve adjusts the flow to the rate required for adequate

sensitivity and response time. A neon light is provided at the

end of the probe to indicate leakage conditions when the opera-

tor is in a noisy area and out of visual range of the indicator.

The sampling system operates at slightly subatmospheric pressure;

the pump can provide flow rates up to two liters per minute; aux-

iliary pumps can be used to increase pumping speed.

Table 17-i summarizes the characteristics of light absorption

leakage detectors. Descriptions of individual instruments may be
found in Part III.

17.4 LEAKAGE TESTING METHOD

The absorption detector may be used for leak location or

leakage measurement in a manner very similar to that discussed

in Section i0, "Heated-anode Halogen Detector." Neither the

ultraviolet nor the infrared detectors will be damaged by high

concentrations of tracer gas. Nitrous oxide, the usual tracer

gas, is not soluble to any large extent in rubber or plastic;

hence, systems using these materials may be leak-checked with no

difficulty. Because the molecular weight of this gas is only

slightly higher than that of air, nitrous oxide does not stratify

as much as do the heavier halogenated hydrocarbons.
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Table 17-1

CHARACTERISTICSOF LIGHT ABSORPTIONLEAKAGEDETECTORS

General
Characteristics

Sensitivity

Tracer gas

Output

Power requirement

Size

Infrared
Average Values

1 x 10 -6 atm-cc/sec

i0 parts per million

Nitrous oxide, carbon
dioxide

Mllliammeter

115 volts 60 hertz

or 190/260 volts

50 hertz

12 inches × 12

inches x 20 inches

Weight 60 pounds

Price $2000

Ultraviolet

5 parts per million

Chlorinated hydro-
carbons; aromatic

hydrocarbons

Milliammeter

115 volts 60 hertz

Amplifier: 8 1/2
inches x II inches

x 5 inches

Detector: 6 inches

x 6 inches x 19

inches

30 pounds

$400

When used for leak location, the system has a response time

of approximately three seconds. This, of course, can be changed

by altering pumping speed or probe length. The response of the
instrument is linear over the full scale, and calibration is ac-

complished by introducing tracer gas of a known concentration

from a compressed-gas cylinder into the sample chamber of the

detector. In this way, the instrument response is obtained in

parts per million of tracer gas. The leakage rate is obtained

by multiplylng this response by the flow rate of gas through the

sample chamber.

The detector may be either evacuated or at atmospheric pres-

sure. If evacuated, the system pressure should not be allowed

to vary by more than fifty times the pressure of the tracer gas,

because of the outgassing products usually found in an evacuated

system (water, carbon dioxide, and hydrocarbons) which also ab-
sorb infrared radiation.

Kaufman (Ref. 17-5) has shown that the infrared detector may

be used in locating leaks in buried water lines. Water lines

were injected with nitrous oxide to a ratio of 0.37 volume of

N20 to one volume of water. Leakage out of the lines was located

by a detector probe as a result of the diffusion of gas to the

surface of the ground.
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passes through the reference cell as well as through the sample
cell. The two radiation beams are admitted alternately into the
detector by a chopper.

The radiation detector is a pneumatic device consisting of
two chambers separated by a very thin membrane. These two cham-
bers are filled with an infrared active gas, usually the same gas
for which sensitivity is required. Hence, the name "selective
detector." The membrane is metallized and mounted close to a
fixed plate to form a small electric capacitor. Chopping of the
radiation causes the gas in the detector to be alternately heated
and cooled. The resulting pressure changes flex the membrane to
cause a variation in the electrical capacitance. The capacitance
variation modulates a sensitive radio-frequency oscillator whose
signal is demodulated and rectified to drive an indicating meter.

Gases suitable for use in the absorption cell have absorption
wavelengths in the range of two and ten microns (Ref. 17-1). Such
gases have polyatomic molecules of dissimilar atoms. Other re-
quirements of the tracer gas are that it must be:

• Noncorrosive to the system material

• No fire or explosion hazard
• Nontoxic

• Reasonably priced and readily available

• Producing good discrimination in normal atmospheric
contaminants

Nitrous oxide (N20) is most often used as the tracer gas be-
cause it meets these requirements. Its major absorption band at
4.5 microns affords excellent discrimination ratios against at-
mospheric contaminants normally found in manufacturing plants.

It is completely nontoxic. With oxygen, it is a simple as-
phyxiant in the same class as nitrogen, helium, and hydrocarbons
(Ref. 17-2). Nitrous oxide is an anesthetic, but a very weak
one, since a concentration of more than 80 percent is necessary
in order to produce deep anesthesia (Ref. 17-3). There is no
evidence in the literature of any toxic effects due to ingestion
or inhalation of nitrous oxide. The compound is noncorrosive and
nonreactive with most materials (Ref. 17-4).

Nitrous oxide (N20) should not be confused with nitrggen

oxide (NO), n_+tric oxide ((NO) 2), nitrogen dioxide (NO_ ..... _-

gen tetroxide (N20_), or nitrous fumes (a mixture of NO and NO_) _

With the exception of nitrous oxide (N20), all the oxides of ni-

trogen listed above are corrosive and poisonous. Unless the equip-

ment is designed for their use, no attempt should be made to use

any of these other nitrogen oxides for infrared leak detection. -

Other gases besides nitrous oxide can be used as leak tra-

cers. They must of course, be infrared-active, and their sensi-

tivity will depend mostly on the discrimination ratios of the
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Section 17

LEAKAGE DETECTION BY ABSORPTION OF ELECTROMAGNETIC ENERGY

17.1 INTRODUCTION

Leakage may be detected through the molecular absorption of

radiant energy by the tracer gas. An absorption spectrum will

not only identify the specific molecule involved but can also

tell how much of that molecule is present in a given mixture.

Energy wavelengths in the ultraviolet and infrared regions are

most commonly used in commercial instruments.

The detection system consists of a radiation source, gas
sample, reference sample, and radiation detector. Radiation

passing through the sample is compared with that which passes
through the reference gas. The difference in attenuation between

the two absorptions is a measure of the concentration of the gas.

Each instrument is specific for only one species of gas molecule

and, by design, the possible interference by other gases is mini-
mized.

Ultraviolet-type instruments are usually used for leakage
monitoring. Infrared instruments are used for leak location and

leakage measurements. The instruments are designed to be used

at atmospheric pressure, but they can be modified for use under

other conditions of pressure.

Figure 17-1 is a schematic diagram of a typical infrared de-

tector. Two hot-wire sources provide the radiant energy which

BEAM

GATE
INFRARED WINDOW WINDOWS

souRcE. W. ..................................

_ I_ STANDAROCOMPARISON CELL _'_ _'_'_

FROM PROBE

MIN UTE TEMPERATURE

/ COMPENSATING HOLE

i DIAPHRAGM

_///CONDENSER PLATE

FIXED CONDENSER

V PLATE

AC OUTPUT SIGNAL

TO AMPLIFIER B

INDICATING METER

DETECTOR

SAMPLE OUTLET

TO VACUUM PUMP

Figure 17-1. Infrared Leak Detector. (Reprinted with permission,

from Neeley, A.H., Nitrous Oxide for Leak Detection,

A: Chemical, Physical and Pharmacological Proper-
ties, with Results of Corrosion Tests (Ohio Chemi-

cal Technical Information Series: IA) ; Division

of Air Reduction Company, Inc., Madison, Wiscon-
sin, May 1957.)
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Section 18

LEAK LOCATION BY MEANS OF CHEMICAL INDICATORS

18.1 INTRODUCTION

With the use of chemical indicators, leaks are located by

the appearance of a liquid or the color change of a liquid.

There are two different types of tests which may be employed:

• Chemical tests -- color indication is due to a reaction

between the leaking tracer and a developer

• Penetrant tests -- color is inherent in the penetrant

and is evident at the leak site because of migration

to that point

Penetrant tests in addition to locating leaks, reveal cracks, sur-

face imperfections, and poor welds.

The procedures are qualitative; thus the size of a leak can-

not usually be determined. Each type of test (i.e., penetrant

or chemical) must be considered individually since each has its

own advantages and limitations.

For example, the major limitation of the chemical tests is

the possibility that reactive chemicals might damage system parts.

The penetrant tests can locate both leaks and surface imperfec-

tions; however, since penetrants are liquids, clogging of leaks

can occur (see Section 6.6). This fact limits the utility of

penetrants; they should not be used on systems which must subse-

quently be tested for very small _ 10 -6 atm-cc/sec atm) leakage

rates.

18.2 SENSITIVITY

Chemical indicator tests are more sensitive at long exposure

times. Unfortunately, the tests are not quantitative, because

the indication of a leak is in the intensity of the color and area

covered by the product of the reaction. However, the estimated

sensitivity of the chemical reaction indicators is in the range

of 10 -3 atm-cc/sec.

The sensitivity of penetrants is thought to be several de-

cades greater. Sensitivity of a penetrant is determined by know-

ledge of the time required for sufficient penetrant to flow through

and be observed. When the physical properties of the penetrant

are known, it is possible to calculate the sensitivity (Ref. 6-3).

18.3 MATERIALS AVAILABLE

Chemicals used for indicator tests are available from labor-

atory supply houses. Reagent grade chemicals should be used.
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Penetrant materials are specially compounded dyes, oils,

and solvents. These formulations are proprietary, but most of

them depend upon a color-contrasting dye which is drawn into

the defect. Sources of penetrants may be found in the listings
of Part III.

18.4 LEAKAGE TESTING METHODS

These methods are easily performed, without the need for

highly trained technicians or elaborate test equipment.

18.4.] Penetrant Tests

The penetrant test consists in applying a liquid penetrant

to the surface of a part where it can enter into any defects

open to the surface. After the penetration period expires, ex-

cess material on the surface is removed and a developer is placed

on the surface. The developer is a light-colored, powdered ma-

terial (possibly in suspension), which adsorbs the penetrant that

had previously seeped into surface openings. Development pro-

duces contrasting spots, much larger than the surface openings
with which they are associated.

Penetrants are usually of two types: dye which fluoresces

under ultraviolet light, or colored dye which is in high contrast

to the metal or developer. The penetrant may be applied on the

same surface as the developer, showing both leaks and surface im-

perfections, or the penetrant may be placed on one side of a sur-

face and the developer on the other side. In this manner only

leaks through the part will be seen.

Most commercial penetrants have properties of high wetting

power, low surface tension, low viscosity, and high indicating

ability. Complete details for conducting tests may be found in

the Nondestructiv_ Testin E Handbook (Ref. 18-I).

Other fluids which will indicate the presence of a leak can

be used, especially if they are inherent to the system. For

example, many oils are fluorescent under ultraviolet light and
their presence can be used as an indication of leaks.

Large systems can be tested under stress by filling the sys-

tems with a testing fluid under pressure and examining for leaks.

A patent by Polito (Ref. 18-2) describes a water solution for

such tests; it consists of 0.5 percent (by weight) monoethanoiam-

ine, 0.05 percent polyethylene glycol tert-dodecylthioether, and

50 parts per million fluorescein. The amine is used in this case

as an antioxidant and a corrosion inhibitor. The thioether is

used as a surfactant to reduce the surface tension of the solu-

tion and to better wet the walls of the leak. The indicator is

fluorescein, which glows brightly in ultraviolet light. After

pressurizatlon with the test liquid, the suspected leak areas on

the outside of the system are examined with a portable ul_ravio-

let light.
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18.4,2 Chemical Tests

Chemical test methods depend on a chemical reaction to pro-

duce a smoke or change in color at the leak site. A number of

typical examples are described below.

18.4.2.1 Ammonia Gas. Ammonia gas makes an excellent tracer

because it is chemlcally baslc, Is not highly toxic, and is only

mildly corrosive. Its corrosive nature is strongly exhibited

only on brass parts. Delafosse, No_ and Troadec (Ref. 18-3)

describe a variety of possible tests using the gas. The ammonia

tracer can be introduced as an anhydrous gas, or a cloth satur-

ated with ammonia solution can be placed within the pressurized

space. The sensitivity of the tests will be dependent upon the

concentration of the gas.

Where leaks are present, the leakage of ammonia will be re-

vealed by a white chemical fog which develops when the atmos-

phere is probed with a swab wetted with 0.1 N hydrochloric acid.
Sulfur dioxide, such as from a sulfur candle7 can also be used

to reveal the presence of ammonia. Smoke has also been used to

detect leaks (Ref_ 18-4).

A variety of indicator solutions may be used to give a color

change with ammonia. These all depend on a change of pH of the

indicating solutlons. Therefore, the pH of the solutions should

be carefully ad]usted so that they are at the threshold of color

change prior to use.

A cloth dampened with a phenolphthalein solution and placed

over the test area shows the location of leaks by a pink discol-

oration. The indlcator consists of 1.0 percent phenolphthalein

in a solution of equal amounts of water and ethyl alcohol. A

better indicator is: fzve parts two-percent phenolphthalein in

alcohol, two parts distilled water, ten parts glycerin, and suf-

ficient titanium oxlde powder to thicken the solution to the

consistency of a thln palnt. The titanium oxide powder serves

the additional purpose of providing a white background against

which the color change is contrasted.

For a yellow-to-purple color change (Ref. 18-5) 40 milli-

grams of bromocresol purple is dlssolved in four milliliters of

0.02 N sodium hydroxide. This is diluted to 100 milliliters.

In a separate container, ten grams of starch is added to 500

milliliters of boiling water and stirred to form a slurry. The

dye solution is added to the starch slurry. To this mixture is

added five milliliters of Tween 40 wetting agent, and the pH is

adjusted to 5.0 with dilute hydrochloric acid. To test, a small

portion of the indicating agent is put on a piece of paper and

the paper is moved rapidly through the air, horizontally, about

12 inches away from the open top of a bottle of standard ammonia

reagent. Immediate appearance of purplish color on the paper

shows the agent is ready for trial application. Otherwlse, slight

additional pH ad3ustment may be necessary.
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It is posslble to use alizarin between a pH of 5.5 and 6.8
or methyl red between a pH of 4.4 and 6.0 as an indicator (Ref.
18-3)_ These show a color change better _f a trace of methelene
blue is added to the solution. The addition of calcium chloride
to the indicator solution to complex the ammonia increases color
retention as well as increasing the sensitivity of the test.

18.4,2,2 Carbon Dioxide Gas. Carbon dioxide can be used as a

tracer gas. It is not as sensitive as ammonia but is noncorro-

sive. The system should be filled with the gas and the outside

sprayed with an agar-agar solution of an indicator (Ref. 18-6).

Agar-agar solutions can be "loaded" with sodium carbonate and

phenolphthalein, yielding a bright cherry red solution which

turns white upon contact with carbon dioxide. This solution

can be sprayed onto the surface to form a stable red film. Car-

bon dioxide causes a white spot to be produced in the agar-agar

film at poants of leakage. Studies indicate that the volume of

agar-agar film which is discolored is directly proportional to

the amount of carbon dioxide that enters the film. Therefore,

the area of discoloration is directly proportional to the amount

of carbon dioxide which has escaped.

The spray solution consists of (parts by weight): agar-agar,

1.0; distilled water, 40.0; anhydrous sodium carbonate, 0.I0; and

phenolphthaiein, 0.15. It is important to obtain the proper vis-

cosity of agar-agar solution, which should be between eight and

ten millipoises at the spraying temperature.

When the spray solution is prepared, the dry powders (agar-

agar, sodium carbonate, and phenolphthalein) should be blended

thoroughly in proper proportions. To the dried powders boiling

distilled water should be added, with stirring to disperse the

solid constituents. The resulting mixture should be heated with

constant stirring, to between 96 and 98°C, on either a hot plate

or a steam bath. When the solid is completely dissolved and a

clear solution is obtained, it should be allowed to cool to be-

tween 65 and 70°C_ At this temperature it may be stored in a

closed container and sealed to exclude air and small quantlties
of carbon dloxide.

To perform the test, the hot agar-agar solution from the

storage container tat 65 to 70°C) is poured into the preheated

sprayer bottle. The compressed air supply should be preheated

in a heat exchanger to the spraying temperature° The spray noz-

zle should be held approximately two feet from the test piece.

A single coating should be applied, in one pass. Multiple coat-

ings should be avoided. Spraying should always be done in a hori-

zontal direction, never vertically.

After testing, _he agar-agar film can be removed completely

with a jet of high-velocity air from an air nozzle. Thls leaves

the surface cf the device clean and dry.
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18.4.2.3 Miscellaneous Chemical Tests. Hydrogen sulfide has

been used as a tracer gas to locate leaks (Ref. 18-7) with an

indicator of a five-percent solution of stannous chloride. The

leak location is shown by a brown stain of stannous sulfide. Be-

cause of the poisonous nature of hydrogen sulfide, this is not a

very popular method.

A variety of other chemical reactions may be used for leak

location. For example, precipitates may be formed by hydrogen

sulfide with silver or lead salts (Ref. 18-5). Leaks in gas

pipelines have been located by the reaction of silver salt solu-

tions with acetylene gas (Ref. 18-8). Water has been used as a

penetrant (Ref. 18-9), with anhydrous copper sulfate as a devel-

oper. Anhydrous copper sulfate turns blue in the presence of
water.

Leak-indicating paints have been reported by Griffith (Ref.

18-10). An immediate color change occurs upon contact with liq-

uid hydrazine or its derivatives. Exposure to oxidizers contain-

ing nitric acid or halogens (bromine pentafluoride and chlorine

trifluoride) immediately bleaches the paint. However, exposure

of the paint to direct sunlight destroys the indicating ability
within two weeks.
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Section 19

LEAK LOCATION BY HIGH-POTENTIAL DISCHARGE

19.1 INTRODUCTION

Leaks in evacuated systems can be located with the aid of

a high-potential discharge. There are two different ways by

which this method may be applied (the choice will depend upon

the particular system to be tested):

i. The exterior of the system is probed with an electrode.

Leaks are detected by the appearance of a spark be-

tween the electrode and the system.

2. The color of a corona discharge within the system is

observed as the exterior is probed with a tracer ma-

terial.

The first method is limited to glass systems or to the glass parts

of metal systems; while the second method does not have these

limitations, it does require the presence of a window for view-

ing the nature of the discharge.

19.2 SENSITIVITY

These methods are qualitative and are useful only from a

few torr to about 10 -2 torr. They will probably detect leakages

of about i0 -_ atm-cc/sec. Pirani and Yarwood (Ref. 5-3) claim

to have detected a leakage of 10 -12 atm-cc/sec; however, an elap-

sed time of six months was required while the pressure in the

test device increased from 1.0 to 1.01 torr.

]9.3 DESCRIPTION OF EQUIPMENT

A hand-held high-potential probe is available from labora-

tory supply houses as a "spark-coil detector," or Tesla coil.

An auxiliary glow-discharge tube (Geissler tube) can be attached

or built into the system with electrodes sealed into the ends,

to which a source of high voltage (DC or AC) can be connected.

Both of these devices operate at potentials of several kilo-

volts. The output should be provided with a circuit to limit

the current to a few microamperes.

The glow-discharge tube may be converted to an audible de-

tector by letting the tube be the variable factor in a relaxation

oscillator circuit. Figure 19-1 is a schematic diagram of such

a circuit, suggested by Lloyd (Ref. 19-1). He observed the am-

plitude of the oscillations to peak at 4 × 10 -1 torr (2.5 kilo-

hertz). On either side of this pressure the oscillations fell

off to zero at pressures of 5 x 10 -2 torr and i0 torr.
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Figure 19-1. Discharge Tube Audible Leak Locator.

(Reprinted with permission from J.T.

Lloyd, Journal of Scientific Instru-

ments, Vol. 27, 1950, p. 76; The In-

st-_te of Physics and The Physical

Society, London.)

19.4 LEAK TESTING - SPARK DISCHARGE

With the system evacuated to a pressure between l0 and l0 -2

torr, the exterior is probed with the spark coil. The probe tip

should be held about 0.5 to 1.0 centimeter from the surface which

is to be tested and the probe moved slowly over the suspected

leak. Continual application of the probe to one spot may punc-

ture the glass wall of the system, score the barrel of a Teflon

stopcock, or rupture gaskets. The probe cannot be brought closer

than several centimeters from metal parts, as the spark will
ground through the metal.

The presence of a leak is shown by the appearance of a

spark from the electrode through the leak which will then ap-

pear as a white spot. The reliability of this method depends

upon operator skill in probing the complete system.

19.5 LEAK TESTING - CORONA DISCHARGE

This test method is quite similar to that of the spark-dis-

charge test. The pressure in the test system must be in the same

range as that for the spark discharge, and a suitable glass view-

ing window or tube must be available for observing the color of

the discharge.
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If the system has a glass section, then a spark coil can be
used to excite the discharge. Guthrie (Ref. 5-4) recommends that
a spark gap of about 0.5 to 1.0 centimeter be connected in paral-
lel with the high-voltage electrode and grounded to eliminate the
possibility of puncturing the glass.

A corona-discharge tube can be attached to the system, pref-
erably near the forepump, where the pressure will be sufficiently
high for a glow to occur. A leak is located by applying a tracer
material to the suspected leak and observing the color change in
the corona glow.

The nature of this discharge will depend on the pressure
and on the gases in the system. The color is characteristic of
the gases present. For air, the color tends toward red or purple.
The exact color (as for other gases; depends to some extent on
the glass used in the system. Pyrex or soda glass will show a
yellow-green fluorescence, while lead glass shows a blue fluor-
escence. The tracer material can be a gas or a liquid. Some ma-
terials commonly used are: Illuminating gas, ether, and carbon
dioxide. With the first two materials the discharge takes on a
grayish-blue appearance. This is similar to the characteristic
color of carbon dioxide but, possibly because of fluorescence of
the glass, the color is often reported as bluish-green.

Volatile liquid such as benzene, acetone, or methanol are
frequently used. In fact, any material whose discharge color
contrasts with the background could be used as tracer material.
However, gasoline, benezene, pyrldine and solutions containing
nitrogen compounds should not be used because they adhere to
glass. Table 19-1 shows the glow-dlscharge colors which are
associated wlth a number of dlfferent tracer materials.

The problem of two leaks of more or less equal size occurs
rarely but must be considered with complicated apparatus. It is
fortunately solved by the fact that in a mixture of more or less
equal parts of carbon dioxide and alr the color of the positive
column tends toward that of carbon dloxide. So if there is car-
bon dloxide on either of the leaks, that leak is located and can
be stopped, and the other can be found later.

Although the sensitivity and reliabillty of leak location
by hlgh-potential discharge are dependent upon operator skill,
recognltlon of a leak is relatively easy. The operator must be
knowledgeable in the probing of all possible leakage areas and
able to recognize the indication of a leak. Probing of the sys-
tem may proceed at a rate of approximately one foot per minute.
Because of the high molecular weights of some of the tracers,
considerable delay may occur between the time the tracer enters
the vacuum system and the time it passes into the discharge area.
(The entire system may be checked for leakage by hooding with
tracer gas as described in Section 5.2.)

19-3



Gas

Air

Nitrogen

Oxygen

Hydrogen

Helium

Argon

Neon

Krypton

Xenon

Carbon
monoxide

Carbon
dioxide

Methane

Ammonia

Chlorine

Bromine

Iodine

Lithium

Sodium

Potassium

Mercury

Table 19-1

DISCHARGECOLORSIN GASESAND VAPORS
AT LOWPRESSURES*

Negative Glow

Blue

Blue

Yellowish white

Bluish pink

(bright blue)

Pale green

Bluish

Red-orange

Green

Bluish white

Greenish white

Positive Column

(Reddish)

Yellow (red gold)

Lemon

Pink (rose)

Violet-red

Deep red (violet)

Red-orange (blood red)

(White )

Blue (White)

Reddish violet

Yellow-green

Greenish

Yellowish green

Orange-yellow

Bright red

Yellowish green

(whitish)

Green

Green (goldish

white)

Light green

Reddish

Peach-blossom colored

Yellow

Green

Greenish blue (greenish)

*Reprinted with permission from Vacuum Technology, by A. Guthrie,

John Wiley and Sons, Inc., New York, 1963, p. 456.

Indicates no distinctive color given.
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This testing method may be applied to sealed systems which
contain a suitable indicating gas; for example, neon. The color
of the induced glow discharge is compared with a standard whose
pressure is known. Pirani and Yarwood (Ref. 5-3) suggest such
a test for quality control tests where extensive experience in
production is lacking.

For the smallest leaks, a discharge tube and a stopcock
should be connected to the line between the forepump and the
diffusion pump. When the stopcock is closed, gas coming through
the diffusion pump accumulates in the discharge tube. If the
discharge tube is clean, it is possible to distinguish between
tracer gas and air in the accumulated gas. Traces of gas on the
walls of the discharge tube will interfere seriously with the
test if they are freed. So, if it takes longer than a few min-
utes to make a test, the discharge should not be started until
it is time to test it. With this precaution, however, one may
make conclusive tests and locate a leak definitely, even when
it takes hours to accumulate enough gas.
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Section 20

IONIZATION-GAGE LEAKAGE TESTING

20.1 INTRODUCTION

An ionization gage may be used as a sensitive indicator of

gas or vapor leakage either into or out of an evacuated system.

In this gage a stream of electrons is provided to ionize

gaseous components in the vicinity of the gage electrodes. As

the ions approach a negatively charged collecting electrode,

they cause a current to flow in an external metering clrcuit.

This current is dependent on the product of the electron current,

the density of the gas in the gage, and a sensitivity factor which

is characteristic mainly of the type of gas involved. The ion

current of a gage may be calibrated in terms of pressure if the

type of gas, the temperature, the electron current, and the gage

sensitivity factor are known. The sensitivity factor depends on

the probability of ionization, which is in turn dependent on ap-

plied voltage and the total number of electrons per molecule.

A change in ion current will occur when there is a change

in gas composition such as may be brought about by leakage of a

gas tracer into a chamber in which a gage is located. Leakage

identification and leak location with an ion gage depend upon a

change in response to a change in gas composition. Testing by

ionization gage is not normally made specific to any particular

tracer gas, and changes in gage response can arise as a result

of changes in parameters other than gas composition -- such as

changes in the pumping speed and outgassing rates.

Electrons required to generate ions in an ionization gage

may be supplied from a thermionic emitter, or from a high-vol-

tage gas discharge which is sustained at low gas pressures by

a static magnetic field. The emitter in a hot-cathode ioniza-

tion gage is sensitive to loss of emission by oxidation, deposi-

tion, or alloying of a nonemitting layer on the hot surface of
the emitter. Loss of emission can be irreversible unless the

operating pressure is kept below approximately 5 × 10 -4 torr.

The ion-discharge (Pe_nning) type of gage may be employed

to monitor pressures at levels higher by three orders of magni-

tude without causing permanent harm to the gage. The ion-dis-

charge type of gage may also be constructed to monitor changes

in gas density at extremely low pressures. Cold-cathode gages

having the geometry of an inverted magnetron have been built to

measure pressures between 10 -3 and 10 -12 torr (Ref. 2-3, pp.

334-336). They are, of course, adaptable for monitoring minute

changes in gas pressure or gas composition in that pressure range.

It is more common to find a hot-cathode triode ioniza-

tion gage as part of a vacuum system. This type of gage is

--i-
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most likely to be available for use in detecting system leakage
in the range of i0 -_ to 10-e torr.

20.2 GAGE RESPONSE IN LEAK SENSING

A procedure for using an ionization gage in leak sensing

and location is described below. An expression is derived for

the change in response which may be expected when a tracer gas
is used.

Figure 20-1 shows how an evacuated chamber which is being

continuously pumped may be tested with an ionization gage. The

surfaces of the chamber are exposed to tracer gas from a tracer

probe (or they can be flooded with tracer gas by enclosing the

chamber with a hood). If a leak is present, both air and tracer

gas enter the chamber and pass to the vicinity of the gage. The

change in gage response may be derived as follows:

TRACER GAS
PROBE

•,_<-LEAK 0_

... ,w.,

_GAGE

SYSTEM

BEING

TESTED

VOLUME - V
ONDUCTANCE -C

r.

SION
SPEED - S

! I

Figure 20-1. idealized System for Vacuum Gage

Response Testing
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Assume that the base pressure in the chamber is constant at

a value P2 with an outflow of gas to the pumps Q. C is the molec-

ular flow conductance of the tubing leading to the pumps from

the chamber, and is assumed to be the effective pumping speed

at the site of the gage. Thus:

Q = P2 C (20-1)

If leakage is governed by laminar flow it will be related

to pressure, leak conductance for laminar flow, and viscosity.

If PI is the total pressure of incoming leakage,

Since PI > > P2,

C L 2 2
QL = -_ (PI - P2 ) (20-2)

C L PI 2

QL = H (20-3)

Suppose the relative concentration of tracer gas is X. The
relative concentration of a±r is then I-X. The leakage will be

removed from the chamber at a rate Q such that:

Q = Ca P2a + Ct P2t (20-4)

At the same time leakage into the chamber will consist of two

terms like that of Equation 20-4. The exiting rate of a given

gas component will be equal to the rate of entrance of that com-

ponent when equilibrium of the system is reached. Thus:

C L PI 2

(X) = Ct P2t (20-5)
n t

C L PI 2
(l-X) = C P (20-6)

Ha a 2a

The total pressure in the chamber is obtained from the above

two equations:

= 2 x (l-X) 7

P2 = P2t + P2a CLP* HtC----_ + _a Caj (20-7)

When no tracer gas is present the equilibrium equation is:

CLPI 2 I (20-8)
Ha = Ca P2a X=0

J

The change in total pressure which occurs when tracer gas appears

at the leak entrance is obtained by subtracting Equation 20-8

from Equation 20-7. Thus :

2 I X + l-X 1 1 (20-9)Ap 2 = CLP, tC t naC a _aCa

___
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If the leak is assumed to be flooded %.-ith tracer, X = l,and

5P = CL p 2 [ 1 1 3
: [ _tCt _---_- . (20-10)a aj

If the sensitivity of the ion gage to air is K a and to the tracer

gas Kt, the change in gage reading, AG, on applying the tracer is:

I_G = CLP _ _ a (20-ii)

rltCt naC a J

It can be seen that the maximum change in gage reading will
be obtained when there is:

,

2.

3.

4.

Complete coverage of the leak by the tracer gas

High sensitivity of the gage for the tracer gas

Low viscosity of the tracer gas

A small value of Ct, the effective pumping speed

for tracer gas

The tracer gas should have a high molecular weight, since the

conductance of the tubing leading to the pump, Ct, is inversely

proportional to the square root of the molecular weight of the gas
involved.

The above derivation of gage response assumes that flow

through the leak is laminar. In small leaks ( < 10 -6 atm-cc/sec)

the flow will be molecular. If the leakage into the system is

molecular, and the pumping speed is determined by the tubulation

leading to the pump, the change in gage response can be expressed
as:

5G = P (X) [K t CLt CLal (20-12)

1 L C---_ - Ka CaJ

where CLt and CLa are the molecular-flow conductances of the leak

for tracer gas and air respectively.

Quite evidently the leak conductances are not generally known

in advance. However, the equation does show the desirable condi-

tions for obtaining a maximum response to tracer gas:

I. Tracer gas should flood the lea< _zea; X--)I.

2. Pumping conductance for tracer aas, Ct, should be low.

3. Gage sensitivity for tracer gas should be higher than
that for air.

4, Pressurizing the outside of a container will increase

the change in gage response. Response will increase

linearly with pressure if the flow is molecular.

5. Gage response will be independent of the viscosity of
the tracer gas.
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Since there are a variety of factors involved in choosing

a proper combination of gas and gage, it is often easier to

determine the sensitivity factor experimentally. Blears and

Leck define this factor as:

pressure caused by tracer @as on the leak
= pressure on system with air on leak

The experimental values of this factor are shown in Table
20-1 for both a hot-cathode gage and a thermal-conductivity

(Pirani) gage.

by :

where

AP
2a

Qmin

C
a

The minimum detectable leak can be determined

AP C

_miO-n = 2a a (20-13)

= smallest measurable air pressure variation

= smallest measurable leakage

= pumping speed for air at the gage

Table 20-1

LEAKAGE TESTING SUBSTITUTION FACTORS

(Ref. 4-6)*

Hot-cathode

Tracer Gas Ionization Ga@e Pirani Ga@e

Butane 10 1

Diethyl ether 5 0.7

Carbon dioxide 1 0.3

Carbon tetrachloride 1 0.05

Benzine 0.3 0.1

Hydrogen 0.4 0.4

Coal gas 0.25 0.25

*Reprinted with permission

It is apparent from the above discussion that the minimum

measurable leakage will be within a decade of the minimum mea-

surable pressure change multiplied by the pumping speed at the

pressure measurement site. In the design of this type of leak-

age measurement, the response time of the system must also be

taken into account. The pumping speed used is the pumping speed

at the site of the gage. Thus the location of the gage affects

the sensitivity. If the gage is connected by way of a restric-

tion, it will be difficult to detect small leaks anywhere except

near the gage itself.
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In the testing of an evacuated system it is important that

pressure fluctuations (such as those which arise from the back-

ing and the diffusion pumps) be reduced to deviations not exceed-

ing 0.2 percent. This can be accomplished by reducing the cross

section of the pumping port or by constricting the gage tubulation.

In the latter case the gage response then becomes slower and a

longer time is required to achieve high sensitivity.

It is desirable that the tracer gas have as different an ioni-

zation efficiency from the background gas (air) as possible. In

general, gage sensitivity increases with the number of electrons

in the molecule (Ref. 2-3, p. 321). It is possible for the change

in gage response to decrease in the presence of tracer gas rather

than increase (Ref. 19-1). Examination of ion gage sensitivities

suggests that the best materials for this procedure are either

those of low molecular weight (hydrogen, helium, neon) or those

of high molecular weight (acetone, ether or alcohol).

In using liquids, care must be taken that they do not plug

the leak. Response may be delayed by adsorption on the leak
surface.

As long as the leaks being located are the ones that limit

the system pressure, this method may be applicable to very low

pressures and/or very low leak rates. It has been shown to be

a more sensitive method than the use of the mass-spectrometer

leak detector (Ref. 20-1).

The sensitivity of the ionization-gage method of leak sens-

ing is greatly dependent on the stability and sensitivity of the

electrometer used to measure the ion current as well as upon gage,

tracer-gas, and pumping parameters. For routine testing with a

conventional triode gage and current monitor, the detection of

leakage rates between i0 -_ and 10 -6 atm-cc/sec can be expected.

Modified gages permit extension of the sensitivity to i0 -I° atm-

cc/sec (Ref. 20-2).

20.3. IMPROVING SENSITIVITY

In order to improve the sensitivity of this method, the

background ionization current may be nulled by means of a sensi-

tive difference amplifier or a galvanometer with backing-off

voltage control, so that very small changes in ionization cur-

rent may be detected. An example of a circuit for such testing

is shown in Figure 20-2. The indicating instrument has been re-

placed with a potentiometer and the null balance instrument is a

galvanometer or a sensitive microammeter, either of which is pro-

vided with a suitable shunting circuit. In a stable vacuum a

constant current flows through the gage tube and the potentio-

meter, creating a steady voltage drop across the potentiometer.

The battery provides a reference voltage and the potentiometer

can be adjusted to give a null indication on the galvanometer.

The shunting switch is left closed until this adjustment is made.
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Figure 20-2. Null Balance Circuit for Leak Location.

(Reprinted with permission from W.E.

Briggs, A.C. Jones, and J.A. Roberts,

"Leak Detection Techniques", 1958 Fifth

National S_nnposium on Vacuum Technology
Transactions, Symposium Publications

Division, Pergamon Press, New York

(Ref. 10-2).)

Care must be taken that the tracer gas does not permanently

react and change the gage sensitivity. For example, Varicak

(Ref. 20-3) found that after carbon dioxide had been applied for

some time, the sensitivity of a Penning gage changed. The dis-

charge current decreased about 30 to 40 percent, probably because
of a film of carbonates on the electrodes.

The sensitivity of an ionization gage to tracer gas can also

be increased if the gas is brought selectively to the gage, by

the use of a selective membrane or a cryogenic trap in front of

the gage. For example, if an ionization gage is separated from

the test system by means of a palladium membrane, and if the mem-

brane is heated to about 700°C, the presence of hydrogen can be

easily detected by the gage because of the rapid and selective

permeation of hydrogen through hot palladium.

When the palladium barrier gage is used and maximum sensi-

tivity is desired (_p N 2 x 10 -8 torr) it is necessary to place

a liquid nitrogen trap between the gage and the rest of the sys-

tem; this excludes hydrocarbons and water vapor from the gage.

.
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Such vapors dissociate at the hot palladium surface to give hy-
drogen, which produces a spurious response. In addition, the
cracked hydrocarbons build up a carbon layer on the palladium
which reduces its permeability.

It is also desirable to use a mercury rather than an oil
diffusion pump in the vacuum system since the hydrogen which re-
sults from the decomposition of diffusion-pump oil gives rise to
an unstable background ion current in the gage. In a system con-
taining multiple leaks, oxygen in the air entering the undetected
leaks combines at the hot palladium surface with the hydrogen en-
tering through a leak which is being probed. If there is an ex-
cess of oxygen all hydrogen will react with the oxygen before it
can pass through the barrier, and will therefore be undetected.
Under these circumstances, Ochert and Steckelmacher (Ref. 6-7)
have suggested that a controlled leak of hydrogen should be ad-
mitted to the system to take up the oxygen. To obtain maximum
leak-detection sensitivity in the presence of oil vapor it has
sometimes been found necessary to maintain a hydrogen partial
pressure in the system of about 3 × 10-7 torr by the addition
of a glowing tungsten filament at about 800°C (Ref. 20-4).

If air is admitted to the ion gage, the palladium becomes
oxidized even if it is cold. Whenever this occurs, two to three
hours of run-in time are required to obtain reproducible results
on duplicate runs. Therefore, even if the gage is not in use
the forepumps should be operated continuously to prevent air con-
tact with the palladium. If the gage is left exposed to the at-
mosphere, several warm-up runs should be made, allowing hydrogen
to pass through the calibrated leaks and pumping down between
successive runs.

As another example, it is possible to use an absorbent bed
which will pass the tracer gas and block air. Silica gel, out-
gassed at 300°C and then cooled to liquid nitrogen temperatures,
is commonly used for this purpose. Under these circumstances,

silica gel readily passes hydrogen and the noble gases (helium,

neon, argon) but not air. A system using a silica gel bed with

a cold cathode gage and hydrogen has been described by van Leeuwen

and Oskam (Ref. 20-5). Further refinements of this gage separated

it from the system by a liquid nitrogen cold trap filled with

silica gel (Ref. 20-6).

Van Leeuwen and Oskam claimed this system to be about a hun-

dred times more sensitive than the palladium-hydrogen system.

However, several hours were required to measure leaks of the or-

der of 10 -I; atm-cc/sec, and careful degassing of the leak detec-

tor and the tube to be tested was necessary. One advantage

claimed for silica gel is a long usage time before it has to be

degassed. The increased sensitivity of silica gel is claimed to

be due to less gas evolution from the gel than from heated pal-

ladium; this results in lower pressures. This detector, although

very sensitive, is limited by long pump-down times.
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A dual magnetron leak detector is described by Beck and King

(Ref. 20-7). Two magnetron ionization gages are connected in

series, with a cryogenic trap between them. The outputs of these

two gages are balanced on a bridge. Tracer gas changes the cur-

rent of the first gage, but is condensed in the trap and therefore

does not affect the second gage. With two gages, background pres-

sure variations do not affect the detector. The sensitivity of

this detector is reported to be 10 -_° atm-cc/sec.

The inverted magnetron can be converted to an extremely

sensitlve helium leak detector IRef. 9-9). It operates with-

out a hot filament, is inexpensive, small, rugged, and bakeable,

and the electronic circuitry is simple. Leakages of 10 -_ atm-

cc/sec are readily detected, while with selective pumplng the

minimum detectable leak is claimed to be i0 --J atm-cc/sec.

Negative-ion forming tracer gas {such as refrigerant F-12)

can be detected in a modified ionizatlon gage described by

Perkins and Robinson (Ref. 20-8). Because refrigerant gases are

uncommon in vacuum systems it is possible to use them to probe

for leaks. At a system pressure of 10 -4 torr a negatlve-ion

partial pressure of i0 -I_ torr can be detected.

One very sensitive means of locating leaks in vacuum sys-

tems is to observe the temperature-limited emlssion of a tungsten

filament in a vacuum. Lawton (Ref. 20-9) found that when a stream

of oxygen is blown over the outside of a leak, the resulting in-

crease in oxygen pressure in the vacuum system causes the emls-

sion of the filament to drop. Although the principle has been

known for a long time, and various circuits developed for its

use (Ref. 20-10), this technlque has not been extensively used.

Leger (Ref. 20-I1) developed an instrument using this tech-

nique. Barton (Ref. 20-12) describes experiments in which the

grid of a triode ionization gage was connected externally to the

collector to form a diode. This was used to detect oxygen ad-

mitted to the apparatus under controlled conditions. He reports

that an air leak which gave rise to a partial pressure of 10-

torr was readily detected when probed with oxygen.

The detection circuit used was a modified ionization-gage

control unit. The filament was heated by a regulated power sup-

ply but was not emission-regulated. The emission current was
read on a 0 to i0 microammeter in series with a 4.5-volt battery

and a resistor. In this way, it was possible to read a change

of a microampere at an emission of more than ten microamperes.

Bloomer and Brooks (Ref. 20-13) examined the requirements

for stable operation of this type of detector, using thoria-

coated tungsten filaments. They found it best to reduce the

thoraa to thorium at the beginning of the test by heating for

a few seconds to a temperature of 2400°K. The greatest sensi-

tivity is at an operation temperature 3ust below 1900°K, when

the tungsten surface is partly covered with thorium. This can

--o-
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be obtained only when leaks of 10 -9 torr-laters per second or less

are remaining in a well-baked system pumped at a speed of 0.I

liter per second.

The filament can become desensitized when it is carburized.

Because of the danger that this could happen in the presence of

hydrocarbon vapors, and because of the influence of residual

water vapor upon the emission of electrons from the thoriated

tungsten, the detector is not very suitable for use in an unbaked

apparatus. If a filament accidentally becomes carburized it must

be replaced; no thermal treatment cycle will bring it back to a

sensitive state. But in a well-baked system thoriated filaments

can, if necessary, always be restored to a desired state of sensi-

tivity by a short period of running at a temperature of about
2400°K.

20.4 DISCHARGE GAGES AND ION PUMPS IN LEAK SENSING

Cold-cathode, gas-discharge ion pumps are convenient instru-

ments for leak location. An ion pump acts not only as a pump but

also as an effective pressure gage, since the pump current is pro-

portional to the number of molecules being pumped. Pump current

is also dependent on the ionization efficiency. Pumping speed is

dependent on the chemical reactivity of the gas molecules being

pumped rather than on their molecular weight. Therefore, the

response of an ion pump to a tracer gas will be different from

that of a triode ionization gage.

Figure 20-3 shows the response of ion-pump current to leak-

age as a function of time for five typical trace gases (Ref. 20-2).

The short-term response is generally quite different from the

long-term time response. To make full use of the procedure the

tracer gas must be applied to suspected leak areas for a time

period which is about five times the ratio of the pumping speed
to system volume.

The best gases for use in leak location by ion pump are ar-
gon, oxygen, and carbon dioxide. Estimates of the minimum de-

tectable leakage that can be located with an ion pump are about

10 -11 torr-liters per second. This is a conservative estimate

of the sensitivity. The current changes being measured are

several orders of magnitude greater than the corresponding mass-
spectrometer ion currents (Refs. 20-2, 20-4).

A novel leak detector has been described by J.R. Young

(Ref. 20-15). Using the system shown in Figure 20-4, the pro-

cedure is to evacuate an ion pump and keep it operating at low

pressure with the valve VI closed. The system to be leakage-

tested is first evacuated by a mechanical pump to a pressure of

i-I0 x 10 P3 torr. Valve Vl is then opened and V2 closed. An

equilibrium pressure is reached in a few minutes. When the leak

is probed with argon, the ion pump current increases rapidly,

presumably because of the low speed of the pump for argon. Prob-

ing with hydrogen and oxygen causes a reduction in pressure,
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RELATIVE TIME

Response of Ion Pump Current to Various Gases.

(Reprinted with permission from 1962 Trans-

actions, Ninth National Vacuum S_nnposium of the

American Vacuum Society, J.W. Ackley and others
pp. 380-383, Copyright 1962, American Vacuum
Society.)
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Figure 20-4. Ion Pump Leak Detector. (Reprinted

with permission from J.R.Young, Re-

view of Scientific Instruments, Vol.

32, 1961, p. 85; Copyright 1961, Amer-

ican Institute of Physics.)

since these gases are pumped more rapidly than air. Helium is

also used as the search gas, but the sensitivity is lower than

for argon.

Leaks as small as 10 -I° torr-liters per second can be lo-

cated by this technique. Leaks between 10 -3 and 10 -s torr-liters

per second can be located by partially opening Vl and having V2

opened sufficiently to avoid a pressure increase in the system

during the testing procedure. Leaks of i0 -s to 10 -8 torr-liters

per second can be determined a few minutes after opening V, and

closing V2. Leaks smaller than 10 -e torr-liters per second re-

quire a longer time, depending on the volume and outgassing pro-

perties of the item under test.

20.5 APPLICABILITY OF METHOD

In general, when testing evacuated systems by means of ioni-

zation gages little additional equipment is necessary. Leak lo-

cation can be performed with gages already on the system and with

a variety of tracer gases. The method is inexpensive and requires
no highly trained personnel.

The method is dependent upon maintaining a constant pressure

in the system. If the system pressure varies for reasons unre-

lated to testing, leak location by this procedure is not practical.
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The method cannot be used in a contaminated atmosphere, be-
cause the gages will respond to the other gases present in the
air. Therefore, they are not used in areas where welding (inert
gases), cleaning (solvent fumes), brazing (combustion products),
or painting (paint solvents) operations are performed.
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Secti on 21

LEAK DETECTIONWITH THERMALCONDUCTIVITYGAGES

21.I INTRODUCTION

Gages which sense a change in the thermal conductivity of a

gas at low pressure can be employed to indicate leakage into or

out of a chamber. Such gages are commonly attached to vacuum

systems to indicate pressure in the range of a few torr to per-

haps 5 x I0 -_ torr. These gages do not detect pressure directly
and must be calibrated in terms of pressure. When a small wire,

or similar element, is heated electrically, the temperature at-

tained by the wire depends upon the rate at which heat is removed

by the surrounding gas. At high gas pressure the mean free path

of the gas molecules is much shorter than the distance between
the heated wire and the nearest cold wall; hence, the thermal

conductivity of the gas is independent of pressure. However, as

this mean free path becomes comparatively long, as at low pres-

sures, the heat that is conducted away by the gas is linearly

proportonal to the gas pressure.

In fact, the rate of heat removal per unit area of heated

surface is proportional to the product of the pressure, the

molecular heat conductivity of the gas, and the difference in

absolute temperatures of the hot and cold surfaces (Ref. 2-3,

p. 281). Heat loss by radiation is kept very small by operating

the heated wire at a relatively low temperature, in the range of

i00 to possibly 200°C.

When a constant current is fed through the wire, the temper-

ature of the wire will increase proportionally as the gas pres-

sure decreases. The temperature change in the wire will cause

a change in its resistance which can be sensed by connecting the

wire as one arm of an electrical bridge circuit, as is done in a

Pirani-type gage. Greater sensitivity to changes in gas pressure

can be obtained by using higher impedance circuits and semicon-

ductor thermistor elements to detect small changes in temperature.

Stability of the bridge circuit against changes in ambient tem-

perature can be improved by using a matched pair of thermistors,

one element being located in the vacuum chamber and the other in

a sealed chamber at the same ambient temperature as the chamber

in which the sampling thermistor is located. In a thermistor

form of thermal conductivity gage the bridge output current is

linearly proportional to pressure over three decades of pressure

from 2 × 10 -_ torr upward.

The temperature of the element heated with a constant current

in a low-pressure environment can be monitored directly with a

thermocouple rather than indirectly by measuring a change in the

resistance of the element. Thermocouple gages of the thermal con-

ductivity type are preferred for monitoring foreline pressure on
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present-day vacuum systems, since only an approximate indication
of pressure signifies that a diffusion or ion pump can be turned
on without harm to the pump oil.

The relatively low operating temperature of the sensing ele-
ments makes these detectors quite safe to use under most indus-
trial conditions. The functional life and long-term stability
of the sensing elements are good. The only ill effect which has
been noted after long periods of operation under industrial con-
ditions has been the accumulation of a dust deposit in the intake
line which is easily removed.

21.2 APPLICATION TO LEAK DETECTION

The response of a low-pressure thermal conductivity gage

depends in part upon the composition of the gas in the chamber

in which the gage is located. When there is leakage of a tracer

gas into the chamber the gas composition and its thermal conduc-

tivity change. As a result, the gage responds to the presence

of the tracer gas.

For example, a change in response of perhaps 25 percent will

take place when a noble gas is substituted for air in the chamber.

In a thermocouple gage the response varies with junction temper-

ature and increases with the molecular weight of the gas. In

gages involving a resistance bridge the response may be made to

increase or decrease, according to the location of the sensing

element in the circuit. In any event, leakage detection depends

upon there being a difference in the molecular conductivity of

the ambient gas and the tracer gas.

21.3 SENSITIVITY

The maximum sensitivity of thermal conductivity @ages for
the sensing of leakage is in the range of 10 -_ to I0 -° atm-cc/sec.

For field-testing the sensitivity may be only 10 -3 atm-cc/sec,

while the ultimate sensitivity is obtained only by using special

temperature compensation and control procedures.

21.4 OPERATING AT ATMOSPHERIC PRESSURE

Gages in which heat is removed from a sensing element by

convection can be used for leak location at atmospheric pressure.

Changes in gas composition due to the presence of a tracer gas

cause a change in resistance or temperature of the element. This

type of gage is relatively insensitive to pressure.

A typical example of a detector probe employs a hot-wire

resistance bridge having a resistance element in each of two

arms of a bridge network. One element is exposed to air con-

taining tracer gas, while the other is exposed only to air and

serves as a reference to compensate for changes in ambient con-
ditions (Ref. 21-1).
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As shown in Figure 21-1, the sensing elements are mounted
in a metal block inside a hand-held probe unit. Gas samples are
drawn up through a narrow bore tube by the action of a small fan
which can be run at two speeds: a fast speed for maximum re-
sponse, and a slower speed to provide increased detection sen-
sitivity at some sacrifice in response time.

MOTOR FAN FILAMENT

THERMAL
CONDUCTIVITY

REFERENCE BRIDGE
TUBE

Figure 21-1. Thermal Conductivity Leak Detector.

(Reprinted with permission from W.

Steckelmacher and D.M. Tinsley,

Vacuum, Vol. 12, No. 3, 1962, pp.

153-159; Copyright 1962, Pergamon
Press, Inc., New York.)

To obtain a good response, the sensing elements must be

small enough to fit into chambers of small volume. Since this

detector is intended to discover changes in gas concentration

rather than rates of flow, the gas should be made to flow past

the entrance of the element chambers rather than through them.

The sensing elements are coils of thin tungsten wire mounted on

glass-metal seals in a compact assembly. In more recent designs,
thermistors have replaced the tungsten wires (Refs 21-2 and
21-3).

The electronic circuitry can be transistorized, and thereby

made compact enough so the unit can be hand-held. The components
consist mainly of a stabilized power supply for the thermal con-

ductivity bridge, an amplifier to increase the amount of bridge
unbalance, and a meter or signaling device. The electrical

power source can be either batteries or line current. An atten-

uator makes it possible to vary the sensitivity of the instru-
ment.
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21.5 LEAKAGE TEST METHODS

21.5.1 Evacuated Systems

When the system pressure is in the range of the thermocouple

gage the suspected leak area is simply probed with a suitable

tracer. Best results will be obtained if the pumping speed is

relatively low. A suitable location for the gage is the line be-

tween the diffusion pump and the forepump.

In principle, any tracer gas having a thermal conductivity

different from that of air can be used. The sensitivity depends

upon relative differences in thermal conductivities of the gases.

It is apparent in Table 21-i that both hydrogen and helium show

large relative differences, and are therefore the most sensitive

tracer gases for this method. For special applications, it is

sometimes desirable to employ one of the other tracer gases. The

table, based on data from Reference 21-4, gives some indication

of the results to be expected. It is clear that those gases with

a thermal conductivity greater than air (such as hydrogen, helium,

neon, methane) or those with thermal conductivities less than

air (such as halogenated hydrocarbons, argon, carbon dioxide)
would be suitable.

The resistance bridge used in this detector does not actu-

ally measure thermal conductivity. Because of its structure,

the readings obtained are dependent not only on thermal conduc-

tivity but on density, accommodation coefficient, and viscosity.

Therefore, the values of thermal conductivity merely give an in-

dication of the trend to be expected in behavior.

While the use of liquids to probe for leaks is not recom-

mended, Minter (Ref. 21-5) reported a 20:1 improvement in signal

strength with water, compared to that obtained with hydrogen as

a tracer material. When probing with hydrogen an increase of

tracer-gas partial pressure can be obtained by reducing the dif-

fusion-pump heater voltage (Ref. 21-6). This decrease of hydrogen-

gas pumping speed is obtained without materially reducing the

pumping speed for other gases.

Modifications of the simple leak location technique are

similar to those described in Section 20 for ionization gages.

For example, Kent (Ref. 21-7) describes a Pirani leak detector

using hydrogen gas; the gage is isolated from the system by a

cooled charcoal trap. With this device it is possible to locate
leaks as small as i0 -s atm-cc/sec.

Ishii (Ref. 21-8) developed a differential leak detector

using butane gas. It has two Pirani gages in a Wheatstone bridge

circuit. One of the gages is in series with a charcoal trap.

This arrangement has stability because any random pressure

changes will be detected by both gages, while the butane tracer

gas will be absorbed by the charcoal. The charcoal does not have

to be heated during detection. The sensitivity of this system

is reported to be 10 -6 atm-cc/sec.
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Table 21-1

THERMAL CONDUCTIVITIES OF TRACER GASES*

Chemical Molecular

Oa___s Formula Weight

Air (Mixture) 29.9

Acetylene C2H2 26

Ammonia NH3 17

Argon A 39.9

Benzene C6H6 78

Butane C_HI0 58

Carbon dioxide C02 44

Carbon disulfide CS2 76

Carbon monoxide CO 28

Ethane C2H_ 30

Ethylene C2H_ 28

Halogenated CCIsF 137.4

hydrocarbon F-f1

Halogenated CC12F2 120.9

hydrocarbon F-12

Halogenated CHClzF 102.9

hydrocarbon F-21

Halogenated CHCIF2 86.5

hydrocarbon F-22

Halogenated CCI2F-CCIF 2 187.4

hydrocarbon F-If3

Halogenated CCIF2-CCIF2 170.9

hydrocarbon F-II4

Helium He 4

Hydrogen H2 2

Hydrogen sulfide H2S 34

Krypton Kr 83.8

Methane CH_ 16

Neon Ne 20.2

Nitric oxide NO 30

Nitrogen N2 28

Nitrous oxide N_O 44

Oxygen 02 32

Propane C_H0 44

Sulfur dioxide SOz 64

Water vapor H20 18

Xenon Xe 131.3

* Data from Reference 21-4.

**Thermal conductivity values for a temperature of 20"C in units

of BTU/(hr)(sq ft) ("F/ft).

21-5

Thermal

Conductivity**

0.01478

0.01128

0.01333

0.01016

0.00538

0.00822

0.00873

0.00410

0.01360

0.01102

0.01025

0.00470

0.00542

0.00554

0.00660

0.00438

0.00629

0.08740

0.10770

0.00770

0.00540

0.01872

0.02660

0.01180

0.01462

0.00925

0.01490

0.00925

0.00514

0.01087

0.03000



Measurement of the total leakage can be obtained by the

methods suggested in Sections ii and 12.

21.5.2 Pressurized Sxstems

The minlmum leak discernible by a detector probe, in terms

of quantity of tracer gas per unit time, depends upon the rate

of flow of the gas through the leak detector and the minimum

concentration to which the detector will respond. With reduc-
tion of the rate of flow, smaller leaks can be detected. How-

ever, there is a practical limit, since it is important in leak

location that the detector should respond quickly when the probe

traverses the position of the leak. Reducing the rate of flow

lengthens the response time, and beyond a certain point the in-

dications from the leak detector become meaningless.

For tests with the thermal conductivity detector the atmos-

phere must be free from tracer gas. If a system with a very

large leak is being tested, the local atmosphere may become con-

taminated with tracer gas. While this will be inherently bal-

anced out by the reference circuit, ultimate sensitivity is

bound to decline. This shortcoming has been overcome by the use

of a reference gas in a four-element thermistor bridge circuit

(Ref. 21-9). The reference, or ambient, gas is passed over two

of the bridge elements and the sample is passed over the other

two elements. Leakages of 3 x i0 -_ atm-cc/sec of refrigerant

F-12 were easily detected in confined conditions.
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Section 22

LEAK DETECTION BY GAS-TO-PARTICLE CONVERSION

22.1 INTRODUCTION

A relatively novel approach to the detection of gas leakage

makes use of instruments developed primarily for the detection

of submicron particles in the atmosphere. These instruments are
known as condensation nuclei, or CN, counters. In such instru-

ments water vapor is caused to condense on small particles in an
incoming stream of carrier gas to form droplets which are much

larger than any of the particles. The droplets scatter visible
light and are easily detected (Ref. 22-1).

In order to detect a gas, it is necessary to convert gas

molecules to solid particles. This is done by reacting the gas,
chemically or otherwise, with another substance.

22.2 TYPICAL PARTICLE COUNTER

Figure 22-1 is a schematic diagram of a typical CN counter,

showing the arrangement of the basic components. In the diagram
submicron particles in a sample of air are drawn into a humidi-
fier and then into an expansion chamber. The left valve closes

and the right opens, to allow a rapid evacuation of the chamber

to a pressure near 10 torr. The relative humidity rises rapidly
from 100 percent to as high as 400 percent during this expansion.
Water condenses on the tracer nuclei and droplets grow to a size
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Figure 22-1. Condensation Nuclei Counter

22-1

-q°

-



of about five microns in a time of about twenty-five milliseconds.

All droplets attain the same size, regardless of the initial sizes

of the entering nuclei.

A beam of light shining into the chamber and a dark-field

optical system are employed to view the vapor cloud. Only light

which is scattered by the water droplets is registered on a de-

tecting photo tube. The intensity of the scattered light is a

measure of the number of droplets present in the chamber, and

therefore of the number of nuclei particles which entered the

chamber. After a measure of the scattered light has been taken,

the chamber is emptied and flushed with a new gas sample, and the

cycle repeated at a rate of about five hertz.

22.2.1 Particle Sensitivit X

This type instrument will easily detect particles as small

as 10 -3 microns or 10 -_ centimeters in diameter, and will count

as few as i0 to as many as l0 T particles per cubic centimeter.

The sensitivity is as high as one part in i0 I_ by mass. The re-

sponse is linear up to 105 particles per cubic centimeter. Sample

flow rates of i00 cubic centimeters per second are normally in-
volved, at atmospheric pressure.

22.3 GAS-TO-PARTICLE VERSION

Figure 22-2 shows how the particle detector can be employed

to detect gases. The tracer gas sample and carrier gas are first

SAMPLE
CARRIER GAS AMBIENT

GAS "_1 I IPARTICLES

I PARTICLEFILTER I

CARRIERsAMPLEGAsGAS _ CARRIER(;AS

J c*e I SUBMICROSCOPICAIR

_r'_ J BORNEPARTICLE AS
PAI_fICLE I A FUNCTIONOF

CONVERTOR I__SAMPLE GAS

_w.__..j/CONCENTRATION

NUCLEI
DETECTOR

_ ELECTRICALANALO0OF SAMPLE GAS

I LOW I CONCENTRATION
PRESSURE

PUMP

Figure 22-2. Gas-to-particle Conversion Concept

fed through a filter to reduce the particle background to a neg-
ligibly low level, and then are fed to a converter. There a re-

action with the tracer gas occurs, resulting in the formation of

condensation nuclei particles; a fixed number of tracer gas mole-
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cules are involved in the creation of each particle. The par-

ticles then are passed to the expansion chamber to be counted

as before.

22.3.1 Gas or Vapor Sensitivit X

Table 22-1 is a list of gases and vapors which have been de-

tected by means of a gas-to-par_acle conversion process. Some

nine different conversion processes are involved in this listing.

In a photochemical converter, for example, the incoming gas is

simply irradiated by a small ultraviolet lamp. Chemical conver-

sion for unsymmetrical-dimethylhydrazine (UDMH) involves an acid-

base reaction with dilute nitric acid vapor.

Propellants and oxidizers such as UDMH and inhibited red

fuming nitric acid (IRFNA) can be detected directly with high

sensitivities of at least 0.I and 0.5 ppm respectively (Ref. 22-2).

The sensitivities for sulfur dioxide and ammonia gases are in

the parts-per-billion range, exceeding the sensitivity of the

helium mass spectrometer by several orders of magnitude when

operating in a detector-probe or "sniffer" mode.

Many of the gases whlch readily form nucleation sites are

chemically reactive. Their use as tracers should be evaluated

in terms of the hazards that might arise.

Helium and argon cannot be converted to particles, and so

cannot be used as tracer gases. The sensitivity to halogenated

hydrocarbons is not high when pyrolysis is used for conversion.

22.3.2 Stabilit X and Response Time

When calibrated for a specific gas the CN counter will oper-

ate stably within plus or minus five percent for days at a time.

The response time of the counter is about one and one-half seconds

and is the same for all particle concentrations. This is unlike

many instruments, whose response time increases with sensitivity.

More information is needed about factors affecting quantita-

tive measurement of a gas leakage rate with this type of instru-

ment. There is little doubt, however, that the CN counter can

be readily adapted to sensing, locating, and monitoring system

leakage, and that very sensitive and easily used leakage testing

techniques can be developed around this type of instrument.

In addition to detecting gas leakage, the condensation nu-

clei counter can be used to locate leaks in HEPA (high-efficiency
particulate air) filter installations (Ref. 22-3).

22-3



Table 22-1

SOMEGASESDETECTEDBY GAS-TO-PARTICLE CONVERSION

Substance

Aluminum iodide

Ammonia

Benzene

Carbon dioxide

Carbon monoxide

Chlorine

Ethyl alcohol

Freon 12-21

Fuming nitric acid

Hydrochloric acid

Hydrocarbons

Methyl mercaptan

Monoethylamine

Mercury

Metallic carbonyl

Nitrogen dioxide

Naptha

Octane

Sulfur dioxide

Sulfur hexafluoride

Sulfuric acid

Solvesso No. 100

Toluene

Unsymmetrical-

dimethylhydrazine

Type Conversion

Hydrolysis

Acid base

Photochemical

Electrochemical

Chemical

Chemical

Reversed photochemical

Pyrolysis

Hydrolysis

Hydrolysis

Photochemical

Oxidation

Chemical

Photochemical

Hydrolysis

Hydrolysis

Reverse photochemical

Photochemical

Photochemical

Pyrolysis

Hydrolysis

Reverse photochemlcal

Reverse photochemical

Chemical

Concentrations

Utilized PPM

0.01

0.005

2

5

1

1

5

2

0.5

0.5

0.i

0.01

0.5

0.001

0.001

0.5

5

2

0.001

1

1

1

1

0.I
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Section 23

MISCELLANEOUSLEAKAGETESTING METHODS

23.1 INTRODUCTION

This section is a collection of leakage testing procedures

which are unusual, or have application only under specific con-

ditions. Although the selection has been arbitrary it is hoped

that it will give some idea of the variety of leakage procedures

which may be employed.

Almost any detector which will show a change of gas concen-

tration or composition may be used for leakage measurement. The

sensitivity and practicality will depend on the ingenuity with

which the detector is employed. For example, a dental mirror

can be used to detect refrigerant leakage. A spot of condensed

moisture clouds the mirror where the leaking refrigerant, cooled

by expansion through the leak, strikes the surface of the mlrror.

The list of similar possibilities is amost limitless.

23.2 COMBUSTIBLE GAS DETECTORS

Combustible gas detectors are manufactured by several com-

panies (Table 23-1). Details of this type of test equipment

may be found in Part III under the heading "Catalytic Combustion."

These detectors are designed for leak location by the detector

probe technique on systems filled with combustible gases.

Table 23-1

CHARACTERISTICS OF COMBUSTIBLE GAS DETECTORS

General

Characteristics Avera@e Values

Sensitivity

Tracer gas

Output

Power requirement

Size

Weight

Price

1 cu.ft/hr., l0 ppm hydro-

gen, 1% lower explosive limit

Combustible mixtures

Meter, tone, and light

115 volts, 60 hertz, battery

From 4 x 8 x i0 inches to

15 × 17 x l0 inches

2 to 60 pounds

$75 to $60o

Each detector is a hand-held unit, usually with its own pump and

power supply. As in the thermal conductivity detector, the tra-

cer gas is passed over a thermocouple or other temperature sensor.

In the combustible gas detector, however, the heat sensing ele-

ment is in contact with a combustion catalyst. When a combus-
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tible tracer gas comes in contact with the catalyst, the heat

of combustion raises the catalyst temperature and produces a

response of the heat-sensing element.

23°3 ANALYTICAL MASS SPECTROMETER

A mass spectrometer is sometlmes a part of the analytical

equipment present on a vacuum system. This instrument is more

versatile than the mass-spectrometer leak detector described in

Section 9. It can quantitatively measure the concentration of

any gas. Such an instrument can be used to diagnose problems

with a vacuum system, and occasionally locate the source of a
leak.

The use of the analytical mass spectrometer is essentially

the same as that outlined for the residual gas analyzer discussed
in subsection 9.1.1.

23°4 GAS CHROMATOGRAPH

A gas chromatograph separates a mixture of gases and mea-

sures their individual concentrations. The separation is by
means of the differences in their residence times in a column

of sorbent material. This instrument has been used to measure

the permeability of polymers (Ref. 23-1). The same basic equip-

ment design can be used for leakage measurement. The system is

pressurized with tracer gas and placed in a chamber which is at

atmospheric pressure. An inert carrier gas, passed through the

chamber, sweeps across the system. The concentration of tracer

gas in the carrier is measured.

Three advantages of the chromatograph in leak detection are:

• The chromatograph measures leakage at atmospheric

pressure.

• The leakage measurement can be calibrated by measur-
ments traceable to the Bureau of Standards.

• Leakage of the contents of a container may be one of

a variety of vapors or gases which can be detected

directly with a gas chromatograph. Thus no tracer
would be needed to detect a leak in the container.

23.5 GAS CAPACITANCE LEAKAGE TEST

Integrated circuit modules which have already been mu_nted

on printed circuit boards can be tested for leakage by measur-

ing the change in capacitance of the module as gas composition

changes _Ref. 23-2). A back-pressurizing technique which utilizes

a gas whose dielectric constant is one to two percent different

from that of the original filling gas makes it possible to detect

leakages of less than 10-' atm-cc/sec.

Several hours are required to make such a test. Care must

be taken in interpreting the data, to separate the mechanlcal

changes from the gas-concentration changes.
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23.6 PROPELLANT LEAK DETECTOR

It is possible to detect the leakage of propellants by sens-

ing the temperature drop caused by evaporation of the leaking

propellant. Juran (Ref. 23-3) found that the cooling effect was

between 0.01 and 0.3 watt for each cubic centimeter per hour of

leakage, and that changes in temperatures could easily be de-

tected. For example, at a leakage of 5 x 10 -2 atm-cc/sec the

temperature change recorded was 2°F.

23.7 HYDROGEN LEAK DETECTORS

An activated oxide film has been shown to be sensitive to

small amounts of hydrogen or other reducing gases (Ref. 23-4).

Changes in resistivity of these films are rapid in ambient air;

the response time amounts to only a few seconds and recovery is

nearly as rapid. Sensitivity is reported to be about 10 -I to

10 -2 atm-cc/sec.

Another hydrogen detector is a "stick-on" sensor that turns

color in the presence of hydrogen (Ref. 23-5). Less than 1 atm-

cc/sec will cause the reaction. The detector consists of powdered

palladium oxide and a reaction-quenching material, all enclosed

in a porous packet on the outside of which is a heat-sensitive

paint. In use these detectors are mounted on flanges and other

connections where hydrogen leakage may occur.

23.8 OIL LEAK DETECTOR

Leakage of fuel oil, hydraulic fluids, and organic solvents

from flanges or other joints can be detected by the use of a

wrap-on tape which turns red in the presence of oil leakage. The

tape does not burn and is nontoxic. It can be applied by hand

to any surface configuration (Ref. 23-6).

23.9 BIOLOGICAL TECHNIQUES ADAPTED FOR LEAKAGE TESTING

It has often been suggested that one simple method of leak

location is to fill a system with honey, release ants, and watch

where they enter the system. Although this dubious technique is

related in jest, attempts have been seriously made to develop a

leak location technique using a sex hormone of a butterfly (Ref.

23-7). This hormone was injected into pipelines, and the loca-

tion of the leaks was clearly established by the congregation of

a large number of butterflies. Presumably, it was felt that the

sensitivity of the technique could be increased by using a drive

greater than hunger.

Biological techniques are not always used in such a sophis-

ticated fashion. Gas companies routinely place an odor-produc-

ing compound in natural gas. This odor-producing compound serves

as a leakage monitor, indicating the existence of a leak. To

a certain extent, a leak can be localized by the use of such

olfactory techniques.
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The sensitivity of the nose as a leakage testing instrument

should not be underrated. It has been estimated that a concen-

tration of propyl or butyl mercaptan as low as one part per bil-

lion in the atmosphere can be detected. This fact is regarded

with envy by manufacturers of mass-spectrometer leak detectors,
whose standard instruments can detect helium at a concentration

of only one part per ten million. Fortunately for these manu-

facturers, olfactory response is neither quantitative nor very

directional. However, specially trained dogs have been used to

detect leakage from buried pipes.

Vegetation response can be used for leak location. The

growth of many plants is affected by the presence of natural gas.

Gas companies frequently locate leaks in pipelines by traveling

the route of the line and observing adjacent plant growth (Ref.

11-5). Leaks in the line will produce stunted plant growth in

the vicinity of the leak. This will be exhibited by a presea-

sonal color change or a slowdown on the growth rate. Such changes

can be readily detected by trained personnel.
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Section 24

COMMERCIAL LEAK DETECTORS

Part III of thls Handbook presents the characteristics of

the various types of commercial leak-detecting equipment and

their sources. To th±s end, a survey and review was performed

of all known leak detectors, their characteristics and specifi-

cations. The descrzptlve information is presented in condensed

form, and is intended to serve as a general guide and aid in

the selection of leak-detecting equipment suited for specific

applications.

To obtain factual and current information, letters of inquiry
were sent to more than three hundred manufacturers in the United

States, Belgium, England, France, Germany, Holland, Italy, Japan,

Sweden, and Swltzerland. In the interests of uniformity and of

obtaining more speciflc performance data and physical descrip-

tions, each of these flrms was asked to complete and return "in-

formation fill-ln" forms for its units. One hundred and twenty-

eight vendors submitted useful information. Twenty-nine differ-

ent principles are used in the leak-detecting equlpment being
offered.

Vendor replies were received in various degrees of complete-

ness. Information extracted from these replies has been arranged

in tabular form for each leak-detecting equipment. A scrupulous

effort has been made to avoid any interpretation or extrapolation

of the vendor-submitted information. Monitoring types of equip-

ment have not been generally included. However, the classifica-

tion of leak-detecting and leak-monitoring types of equipment is

not always clear-cut-

The commercial field of leak-detecting equipment is highly

competitive and is _n a continuing state of change. Despite this,
much of the submitted information should continue to be useful as

a general guide to leak-detecting equipment, its characteristics,

specifications, and sources, for several years to come.

24.1 ARRANGEMENT OF TABLES

The data have been arranged in five different tables to

facilitate the retrieval of information regarding specific types

of leakage-testing equipment and their sources. The order of

listing is alphabetlcal in each of the tables.
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MANUFACTURERS OF LEAK DETECTING EQUIPMENT - MAILING ADDRESSES

.

1

.

,

.

,

,

.

,

i0.

ii.

Accessory Controls & Equipment Corp.
815 Bloomfield Avenue

Windsor, Connecticut

Aerojet-General Corporation

Aerometrics Division

Box 216

San Ramon, California 94583

Aero Vac Corporation
Box 448

Troy, New York 12181

Alamo Specialty Company

Dist; Alamo Mill Supply Co.
702 Culebra Avenue

San Antonio, Texas

American Design, Inc.
37116 Second Street South

Box 31169

Birmingham, Alabama

American Gas & Chemicals, Inc.
Leak Tech Division

511 East 72nd Street

New York, New York 10021

Andar Corporation

185 East Evelyn Avenue

Mountain View, California 94041

Associated Electrical Industries

Distributed & Maintained by
Picker Nuclear

1275 Mamaroneck Avenue

White Plains, New York 10605

Automation Industries, Inc.

Sperry Products Division
i000 Shelter Rock Road

Danbury, Connecticut 06810

Bacharach Instrument Company
Division of American Bosch

Arma Corporation

200 North Braddock Avenue

Pittsburgh_ Pennsylvania 15208

Beckman Instruments, Inc.

Scientific & Process Instruments

Division

2500 Harbor Boulevard

Fullerton, California 92634

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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Bendix Corporation

Scientific Instruments Division

3625 Hauck Road

Cincinnati, Ohio 45241

Bernzomatic Corporation

740 Driving Park Avenue

Rochester, New York 14613

Burnett Electronics Lab., Inc.
P.O. Box 23015

San Diego, California 92123

Canal Industrial Corporation
5635 Fisher Lane

Rockville, Maryland 20852

Cargille Scientific, Inc.

R.P. Cargille Laboratories, Inc.

33 Village Park Road

Cedar Grove, New Jersey 07009

Century Geophysical Corporation

Century Electronics & Instr., Div.
P.O. Box C Admiral Station

6540 E. Apache Street

Tulsa, Oklahoma 74115

Consolidated Electrodynamics Corp.

Subsidiary of Bell & Howell

1400 South Shamrock Avenue

Monrovia, California

Datametrics, Inc.
87 Beaver Street

Waltham, Massachusetts 02154

Davis Emergency Equipment Co, Inc.
Instrument Division

45 Halleck Street

Newark, New Jersey 07104

Dawe Instruments Ltd.

Western Avenue

Acton, London W. 3

England

The Decker Corporation
45 Monument Road

Bela Cynwyd, Pennsylvania 19004

Devco Engineering, Inc.
37 Pier Lane West

Fairfield, New Jersey



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Dragerwerk Lubeck (West Germany)

Agents: Scott Aviation Corp.

225 Erie Street

Lancaster, New York 14086

Eastern Laboratories, Inc.

1229-31 Washington Avenue

Vineland, New Jersey 08360

Edwards High Vacuum, Inc.

3279 Grand Island Blvd.

Grand Island, New York 14072

Electronic Associates, Inc.

4151Middlefield Road

Palo Alto, California 94303

Erdco Engineering Corporation

136 Official Road

Addison, Illinois 60101

Euphonics Industries, Inc.

1634 West 33rd Place

Hialeah, Florida 33012

Distributor: The Elwood Corp.

2180 Elmwood Ave.

Buffalo, N.Y. 14216

Excelsior Varnish, Inc.

1219-43 West 74th Street

Cleveland, Ohio 44102

Fisher Research Laboratory, Inc.

1975 University Avenue

Palo Alto, California 94302

Flamort Chemical Company

746 Natoma Street

San Francisco, California

Flow Technology, Inc.

401 South Hayden Road

Tempe, Arizona 85281

Fluid Data, Inc.

651-661Calebs Path

Hauppauge, New York 11787

The Fredericks Company

Anne Street

Bethayres, Pennsylvania

Galaxie Products

Box 3412

South E1 Monte, Calif. 91733

37.

38.

39.

40.

41.

42.

43.
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Gas Analysis Systems, Inc.

P.O. Box 146

Basking Ridge, New Jersey 07920

Gas Purifying Materials, Inc.

Instrument & Equipment Division

3-15 26th Avenue

Long Island City, N.Y. 11102

General Air Products Corporation

5345 North Kedzie Avenue

Chicago, Illinois

George W. Gates & Co., Inc.

P.O. Box 216

Hempstead Turnpike & Lucille Ave.

Franklin Square

Long Island, New York Ii010

General Electric Company

Instrument Department

40 Federal Street

West Lynn, Massachusetts

General Electric Company

Materials Engineering Laboratory

Research & Development Center

P.O. Box 43

Schenectady, New York 12301

General Electric Company

Vacuum Products, Business Section

I River Road

Schenectady, New York 12301

44. General Monitors, Inc.

3019 Enterprise Street

Costa Mesa, California 92626

45. Goldak Company, Inc.

1544 W. Glenoaks Blvd.

Glendale_ California 91201

46. Gow-Mac Instrument Company

I00 Kings Road

Madison, New Jersey 07940

47. Granville-Phillips Company

5675 East Arapahoe Avenue

Boulder, Colorado 80302

48. Hastings-Raydist, Inc.

Hampton, Virginia 23361



49.

50.

51.

Hays Corporation

742 East Eight Street

Michigan City, Indiana

Heckerman Corporation

814 West Hyde Park Blvd.

Inglewood, California 90302

Hewlett-Packard Company
Delcon Division

333 Logue Avenue

Mountain View, California 94040

61.

62.

63.

Kobbe-McCawley Corporation
530 Columbus Avenue

P.O. Box 1437

Melbourne, Florida 32901

Lenk Manufacturing Company
P.O. Box 324

Franklin, Kentucky 42134

Lion Research Corporation

60 Bridge Street

Newton, Massachusetts 02195

52. Highside Chemicals, Inc.
I0 Colfax Avenue

Clifton, New Jersey 07013

64. Loenco, Inc.
2092 N. Lincoln Avenue

Altadena, California 91001

53. Hilger & Watts, Ltd.

Hilger - I.R.D. Ltd.

98 St. Pancras Way

Camden Road

London, N.W. i England

Agent: Calibrated Instruments, Inc.
17 West 60th Street

New York, New York 10023

65.

66.

Lumidor Products Corporation

P.O. Box 357

2500 W. 6th Avenue

Hialeah, Florida

Magnaflux Corporation
7300 W. Lawrence Avenue

Chicago, lllinois 60656

54.

55.

56.

57.

58.

59.

60.

Hoke, Inc.
I Tenakill Park

Cresskill, New Jersey

Honeywell, Inc.

Apparatus Controls Division
2701 Fourth Avenue

Minneapolis, Minnesota 55408

Houston Atlas, Inc.
Box 19035

Houston, Texas 77024

Johnson-Williams, Inc.

2300 Leghorn Avenue

Mountain View, California 94040

Japan Vacuum Engineering Co., Ltd.

i, l-Chome, Kyobashi Chuo-Ku

Tokyo, Japan

Justrite Manufacturing Company

2061 N. Southport Avenue

Chicago, Iii. 60614

Kelite Chemicals Corp.
1250 North Main St.

Los Angeles, California 90012
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67.

68.

69.

70.

71.

72.

73.

Marcol, S.A.

Brussels, Belgium

Agent: M. Paquet & Co., Inc.

17 Battery Place

New York, New York

Mast Development Company
2212 E. 12th Street

Davenport, lowa 52803

The Matheson Company, Inc.
P.O. Box 85

E. Rutherford, New Jersey 07073

Met-L-Check Company
11919 S. Western Avenue

Los Angeles, California 90047

Mine Safety Appliances Company
201 North Braddock Avenue

Pittsburgh, Pennsylvania 15208

Minear Scientific Instruments

P.O. Box 6187

San Diego, California 92106

Minnesota Mining & Manufacturing Co.

Chemical Division

2501 Hudson Road

St. Paul, Minnesota 55101



74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

MKSInstruments, Inc.
P.O. Box 215
Lexington 3 Massachusetts 02173

MoakMachine & Foundry Co.
Port Huron, Michigan 48060

ModernEngineering Company,Inc.
P.O. Box 8159
St. Louis, Missouri 63103

National ResearchCorp.
Equipment Division
Subsidiary of Norton Company
160 Charlemont Street
Newton, Massachusetts 02161

NewarkControls Company
15 WardStreet
Bloomfield, NewJersey 07003

Nuclear Products Company
N.U.P.R.O. Company
15635Saranac Road
Cleveland, Ohio 44110

Perkin-Elmer Corporation
Ultek Division
P.O. Box 10920
Palo Alto, California 94303

Phoenix Precision Instrument Co, Inc.
3803-05 North 5th Street
Philadelphia, Pennsylvania 19140

Joseph G. Pollard Co., Inc.
NewHydePark
L.I., NewYork 11040

QuantumDynamics, Inc.
19458Ventura Blvd.
Tarzanaj California 91356

Riken Keiki Fine Instrument Co._ Ltd.
2-7-6 AzusawaItabashiku
Tokyo, Japan

Ruska Instrument Corporation
P.O. Box 36010
6121Hillcroft Avenue
Houston, Texas 77036

Salen & Wicander, AB
Box Sundbyberg3.
Sweeden
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87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Schneider Manufacturing Co.

Reading, Massachusetts

Distributor: The Grisby Company

1204 "_' Street

Washington, D.C.

Shannon Luminous Materials Co.

Tracer-Tech Division

7356 Santa Monica Blvd.

Los Angeles_ California 90046

Sherwin, Inc.
Belmont Chemicals Division

5007 East Washington Blvd.

Los Angeles, California 90022

J. and S. Sieger Ltd.
Poole - Dorset

England

Sierra Engineering
Materials Research Division

6220 San Fernando Road

Glendale, California 91201

Sloan Instruments Corporation
535 East Montecito Street

Box 4608

Santa Barbara, California

Spectronics Corporation

Black Light Eastern Division
24 Kinkel Street

Westbury, L.I., New York 11590

Sprague Devices, Inc.
Huron Street

Michigan, Indiana 46360

Starr-Kapp Engineering Co.

15115 Diversey Street

Dearborn 3 Michigan 48126

Superior Signal Company, Inc.

W. Greystone Road

Spotsworth, New Jersey 08884

Technicon Inc.

Saw Mill River Road

Ardsley (Chaucey), New York 10502

Technology/Versatronics, Inc.

Division Technology Corporation

506 South High Street

Yellow Springs_ Ohio 45387



99.

I00.

Techsonics Inc.
Santa Fe Road
Taos, NewMexico 87571

Tel Air Products Corporation
7010N.W., 37th Court
Box 814
Miami, Florida

112.

113.

Union Carbide Corporation
Linde Division
P.O. Box 6000
Florence, South Carolina 29501

Union Industrial Equipment Corp.
150 CoveStreet
Fall River, Massachusetts 02720

I01.

102.

103.

Teledyne_ Inc.
Analytical Instrument Div.
370 South Fair OaksAvenue
Pasadena, California 91101

Tenvac, Incorporated
Pembroke,Massachusetts 02359

TescomCorporation
Smith Welding EquipmentDiv.
2633 S.E. 4th Street
Minneapolis, Minn. 55414

114.

115.

116.

United States Gulf Corporation
609 SawMill River Road
Ardsley, NewYork 10502

U.S. Safety Service Company

Division M

1535 Walnut Street

Kansas City, Mo. 64108

Uson Corporation
2120 South Postoak

Houston, Texas 77027

104. Testing Systems, Inc.
2826 Mr. Carmel Avenue

Glenside, Pennsylvania 19038

117. Universal Controls Corp.
P.O. Box 20276

Dallas, Texas 75220

105.

106.

Texas Instruments, Inc.

Apparatus Division IPG
P.O. Box 66027

3609 Buffalo Speedway

Houston, Texas 77006

Thermal Industries of Florida, Inc.
3655 N.W. 74th Street

Miami, Florida 33147

118.

119.

Varian Associates

Vacuum Division

611Hansen Way

Palo Alto, California

Varian Mess Analysen Technik

GmBH Heraeus-Engelhard, Inc.

Seco Road

Monroevillej Pa. 15146

107. Thermal Instrument Company
Box 72

Cheltenham, Pennsylvania 19012

120. Veeco Instruments Inc.

Terminal Drive

Plainview, New York 11803

108.

109.

Tinker and Rasor

Detectron Division

P.O. Box 243

San Gabrielj California

Trans-Sonics, Inc.
P.O. Box 326

Lexington_ Massachusetts 02173

121.

122.

Volumetrics

1025 Arbor Vitae

Inglewood, California 90301

Vacuum Instrument Corporation

6 Stepar Place

Huntington Station

Long Island, New York 11746

ii0.

Iii.

Turco Products, Inc.

Div. of Purex Corp., Ltd.
24600 South Main Street

Wilmington_ California

20th Century Electronics Ltd.

King Henrys Drive

New Addington Croydon Suffrey

England

123.

124.

25-5

Wallace and Tiernan, Inc.

25 Main Street

Belleville, New Jersey 07109

Watsco_ Inc.
1800 West 4th Avenue

Hialeah 3 Florida 33010



125.

126.

127.

128.

The Welch Scientific Company
7300North Linder Avenue
Skokie, Illinois 60076

Whittaker Corporation
Pace-WianckoDivision
12838Saticoy Street
North Hollywood, California 91605

Winton Products Co., Inc.
Box 3332
Charlotte, North Carolina 28203

Yellow Springs Instrument Co.,
Box 279
Yellow Springs, Ohio 45387

Inc •
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CODE SYMBOLS FOR TYPES OF LEAK DETECTING EQUIPMENT

°





CODE SYMBOLS FOR TYPES OF LEAK DETECTING EQUIPMENT

Detector Principle

I. Bubble (Liquid Applicant)

2. Catalytic Combustion

3. Chemical Indicator - Dye

4. Chemical Indicator - Dye - Pressurized

5. Chemical Indicator - Reagent

6. Electrochemical Cell

7. Flame Ionization

8. Flow

9. Gas Density

I0. Halide Torch - Flame Color

II. Immersion

12. Infrared Absorption

13. Interferometer

14. Ion Gauge

15. Mass Spectrometer

16. Particle Detector

17. Pressurized CO 2

18. Pressure Change - Gas

19. Pressure Change - Liquid

20. Pressure - Water

21. Sonic - Sonic Range

22. Sonic - Ultrasonic Range

23. Spark Coil (High Frequency)

24. Thermal Conductivity

25. Tracer - Halogen

26. Tracer - Radioactive

27. Tracer - Smoke

28. Ultraviolet Absorption

29. Volumetric Displacement

Code

B

C

D

DP

R

EC

FI

FL

GD

FC

IM

IR

IN

IG

M

PD

CP

GP

LP

WP

S

US

SC

TC

TRH

TRR

TRS

UV

V
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Section 27

MANUFACTURERS OF LEAK DETECTING EQUIPMENT - PRINCIPLES USED

_-_,





LEAK DETECTING EQUIPMENT M-_NUFACTURERS - PRINCIPLE USED

io

2.

3.

4.

5.

6.

7. Andar Corporation

8.

Manufacturer

Accessory Controls & Equipment Corp.

Aero Vac Corporation

Aerojet-General Corp. (Aerometrics Division)

Alamo Specialty Co.)Alamo Mill Supply Co. (Exclusive Agent:

American Design, Inc.

American Gas & Chemicals, Inc.

Associated Electrical Industries

(Distributed & Maintained by Picker Nuclear)

9. Automation Industries, Inc. (Sperry Products Division)

I0. Bacharach Instrument Division of American Bosch Arma

Corporation

II. Beckman Instruments, Inc. (Process Instruments Division)

12. The Bendix Corporation (Scientific Instruments Division)

13. Bernz-0-Matic Corporation

14. Burnett Electronics Lab, Inc.

15. Canal Industrial Corporation

16. Cargille Scientific, Inc.

17. Century Geophysical Corp.

(Century Electronics and Instruments Division)

18o Consolidated Electrodynamics Corp.

(Subsidiary of Bell and Howell)

19. Datametricsj Incorporated

20. Davis Emergency Equipment Co., Inc. (Instrument Division)

21. Dawe Instruments

22. The Decker Corporation

23. Devco Engineering, Inc.

27-1

Detector

Principle

GP

M

V

B

WP

B&R

M& IG

M

D

R&C&TC&

TRH & EC

IR & TC & b_7

M

FC

US

IG

B

FI

GP &M

GP & LP

TC & Fi & FC & C

US

GP

TRH & TC



Manufacturer

24. Dragerwerk-Lubeck (West Germany)

Scott Aviation, Lancaster, Pa. (US distributor)

25. Eastern Laboratories, Inc.

26. Edwards High Vacuum, Inc.

27. Electronic Associates, Inc.

28. Erdco Engineering Corporation

29. Euphonics Industries, Inc. (The Elwood Corporation
is the sole distributor)

30. Excelsior Varnish, Inc.

31. Fisher Research Laboratory, Inc.

32. Flamort Chemical Company

33. Flow Technology, Inc.

34. Fluid Data, Inc.

35. The Fredericks Company

36. Galaxie Products

37. Gas Analysis Systems, Inc.

38. Gas Purifying Materials Company, Inc.

39. George W. Gates & Co., Inc.

40. General Air Products Corporation

41. General Electric Company (Instrument Department)

42.G General Electric Co., Materials Engineering Laboratory

Research and Development Center

43. General Electric Company - Vacuum Products Business Section

44. General Monitors, Inc.

45. Goldak Company, Inc.

46. Gow-Mac Instrument Company

47. Granville-Phillips Company

48. Hastings-Raydist, Inc.

49. The Hays Corporation
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Detector

Principle

R

B

M & TC & IG

M

C

US

B

S &US

B

FL

US

IG

B

TC

TC&C

D

CP

TRH

PD

M& IG

EC&C

S &US

TC

GP &IG&M

FL

EC



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Manufacturer

The Heckerman Corporation

Hewlett-Packard Company (Delcon Division)

Highside Chemicals_ Inc.

Hilger & Watts, Ltd. (Hilger-l.R.D. Ltd.j Division)

Calibration Instruments 3 Inc.

Hoke_ Inc.

Honeywell_ Inc. (Apparatus Controls Division)

Houston-Atlas, Inc.

Japan Vacuum Engineering Co., Ltd.

Johnson Williams Products - Bacharach Instrument Co. 3

Div. American Bosch Arma Corporation

Justrite Manufacturing Company

Kelite Chemicals Corporation

Kobbe-McCawley Corporation

Lenk Manufacturing Company

Lion Research Corporation

Loenco, Inc.

Lumidor Products_ Corp.

Magnaflux Corporation

Marcol_ S. A. (M. Paquet & Companyj Inc. distributor)

Mast Development Company

Matheson Company_ Inc.

Met-L-Chek Companyj Inc.

Mine Safety Appliances Company

Minear Scientific Instruments

Minnesota Mining & Manufacturing Co. - Chemical Division

MKS, Instruments, Inc.

27-3

Detector

Principle

B

US

DP & B

IR

B

UV

C

M

C

FC

B

R

FC

FL

TC

US

D

S

EC

C&TC&R

D

C & TC & IR & IG

S

IM

GP

_I.



Manufacturer

75. Moak Machine & Foundry Company

76. Modern Engineering Company 3 Inc.

77. National Research Corp. (Equipment Division)

Subsidiary of Norton Company

78. Newark Controls Company

79. Nuclear Products Company (NUPRO Co.)

80. Perkin-Elmer Corporation - Ultek Division

81. Phoenix Precision Instrument Company 3 Inc.

82. Joseph G. Pollard Company, Inc.

83. Quantum Dynamics_ Inc.

84. Riken Keiki Fine Instrument Company 3 Inc.

85. Ruska Instrument Corporation

86. Salen & Wicander, AB

87. Schneider Manufacturing Company

88. Shannon Luminous Materials Company

(Tracer-Tech Division)

89. Sherwin, Incorporated

90. J. & S. Sieger, Ltd. (Poole-Dorset - England)

Agent: Smith-Jeese, Inc.

91. Sierra Engineering Company (Materials Research Division)

92. Sloan Instruments Corporation

93. Spectronics Corporation (Black Light Eastern Division)

94. Sprague Devices, Inc.

95. Starr-Kap Engineering Co.

96. Superior Signal Company, Inc.

97. Technicon Corporation

98. Technology/Versatronicsj Inc.

99. Techsonics, Inc.
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Detector

Principle

WP & IM & GP

FC

M

GD

B

M&IG

PD

S

FL

IN&C

GP

C

S

D

D

C

TRR

M

D

B

GP & LP

TRS

R

FL & EC

US



Manufacturer

I00.

I01.

102.

103.

104.

105.

106.

I07.

Tel Air Products Corporation

Teledynej Inc. (Analytical Systems Co._ Teledyne Analytical

Instruments Division)

Tenvac_ Inc.

Tescom Corporation - Smith Welding Equipment Division

Testing Systemsj Inc.

Texas Instruments_ Inc.

Thermal Industries of Fleridaj Inc.

Thermal Instrument Company

108. Tinker & Rasor (Detectron Division)

109. Trans-Sonics 3 Inc.

II0. Turco Products 3 Inc. (Division of Purex Corp. 3 Ltd.)

IlL 20th Century Electronics 3 Ltd.

112. Union Carbide Corporation (Linde Division)

II_ Union Industrial Equipment Corp.

II_ United States Gulf Corporation

II_ United States Safety Service Company

I16_ Universal Controls Corp.

117. Uson Corporation

ll&

119.

120.

121.

122.

123.

124.

125.

Vacuum Instrument Corporation

Varian Associates (Vacuum Division)

Varian Mess Analysen Technik (Hereaus-Engelhard Vacuum,

Inc. distributor)

Veeco Instrumentsj Inc.

Volumetrics

Wallace & Tiernan_ Inc.

Watsco_ Inc.

The Welch Scientific Company
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Detector

Principle

US

C & IR & TC & FI

& EC &UV

M

FI

D

GP

TRH

FL

S

GP

D

M

FI

IN&R&C

B

R

FL

TC

M

M

M

M

V

GP

B

SC



126.

127.

128.

Manufacturer

Whittaker Corporation (Pace-Wiancko Division)

Winton Products Company, Inc.

Yellow Springs Instrument Company, Inc.

Detector

Princ ip Ie

GP

EC
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TYPES OF LEAK DETECTING EQUIPMENT

MANUFACTURERS AND TRADE NAMES





TYPES OF LEAK DETECTING EQUIPMENT - MANUFACTURERS AND TRADE NAME

Bubble - _ Applicant)

Manufacturer

Alamo Mill Supply Company

(Exclusive Agent: Alamo Specialty Co.)

American Gas & Chemicals, Inc.

Cargille Scientific_ Inc.

Eastern Laboratories_ Inc.

Excelsior Varnishj Inc.

Flamort Chemical Company

Galaxie Products

Heckerman Corporation

Highside Chemicals 3 Inc.

Hoke, Incorporated

Kelite Chemicals Corporation

Nuclear Products Company (NUPRO Co.)

Sprague Devices 3 Inc.

United States Gulf Corp.

Watsco, Inc.

Winton Products Co., Inc.

Trade Name

Alspec

FM Inert & Leak-Tec

Sho-Gas

Bubble-Coat

Leak Finding Compound

Detect-A-Leak

1-Spy Leak Detector

Heck-Check

Leak Finder Foam

Chek-Seal

Bubble-Fluid

Snoop & Real Cool Snoop

Air Push

Derek

Search

Sherlock

Catalytic Combustion

Bacharach Instrument Division of American Bosch

Arma Corp.

Davis Emergency Equipment Co. 3 Inc.

(Instrument Div.)

Erdco Engineering Corporation

Gas Purifying Materials Co. 3 Inc.

(Instrument & Equipment Div.)

Bacharach Gastron

Vapotester
Gastester

Tox-Ex

Vaporgraph

Odorgraph
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-a Catalytic Combustion

Manufacturer

General Monitors, Inc.

Houston Atlas, Inc.

Johnson-Williams Products - Bacharach Instr. Co.

Division American Bosch Arma Corp.

The Matheson Company

Mine Safety Appliance Co.

Riken Keiki Fine Instrument Co., Ltd.

Salen & Wicander, AB

J. S. Sieger, Ltd. (Poole-Dorset-England)

Agent: Smith-Jeese, Inc.

Teledyne, Inc.

(Analytical Instrument Division)

Union Industrial Equipment Corp.

Chemical Indicators - Dye

Automation Industries, Inc.

(Sperry Products Division)

George W. Gates & Co., Inc.

Magnaflux Corp.

Met-L-Chek Co., Inc.

Shannon Luminous Material Co.

Sherwin, Inc.

Spectronics Corp. (Black Light Eastern Division)

Testing Systems, Inc.

Turco Products_ Inc.

Division: Purex Corp., Ltd.

(Tracer-Tech Div.)

Chemical Indicator-Dye-Pressurized

Highside Chemicals, Inc.

Trade Name

Duotector

Gascope

Explosimeter

Salwico

Zyglo

Met-L-Chek Flaw Findr

Tracer-Tech

Dubl-Chek

Fluoro Finder

Fluor Chek & Dy Chek

Trace
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Chemical Indicator (Reagent)

Manufacturer

American Gas & Chemicals_ Inc.

Bacharach Instrument Division of American

Bosch Arma Corp.

Dragerwerk-Lubeck (West Germany)

Scott Aviation_ Lancaster (US Distributor)

Kobbe-McCawley Corporation

The Matheson Company 3 Inc.

Techniconj Inc.

Union Industrial Equipment Corp.

United States Safety Service Company

Electrochemical Cell

Bacharach Instrument Division of American Bosch

Arma Corp.

General Monitorsj Inc.

The Hays Corporation

Mast Development Co.

Technology/Versatronics_ InCo

Teledyne 3 Inc.

(Analytical Instrument Division)

Yellow Springs Instrument Co. 3 Inc.

Flame Ionization

Century Geophysical Corp.

(Century Electronics & Instr. Div.)

Davis Emergency Equipment Co._ Inc.

(Instrument Division)

Teledyne_ Inc.

(Analytical Instrument Division)

Trade Name

Bug-It & Jet/Tec

Auto-Analyzer

Kitagawa Detector

Saf-Co-Meter
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Flo___._w

Manufacturer

Flow Technology, Inc.

Has tings-Raydis t, Inc.

Lion Research Corporation

Quantum Dynamics, Inc.

Technology/Versatronics, Inc.

Thermal Instrument Company

Universal Controls Corporation

Newark Controls Company

Gas Density

Halide Torch-Flame Color

Bernz-O-Matic Corp.

Davis Emergency Equipment Company, Inc.

(Instrument Division)

Justrite Manufacturing Company

Lenk Manufacturing Company

Modern Engineering Company, Inc.

Tescom Corporation

(Smith Welding Equipment Division)

Union Carbide Corporation

(Linde Division)

Immersion

Moak Machine & Foundry Company

Minnesota Minning & Manufacturing Company

(Chemical Division)

Trade Name

Linurmass

Dragnet

Jiffy
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Infrared Absorption

Manufacturer

Beckman Instrumentsj Inc.

(Process Instruments Division)

Hilger & Watts_ Ltd. (Hilger-l.R.D. Ltd._ Div.)

Calibrated Instruments, Inc.

Mine Safety Appliances Company

Teledyne_ Inc.

(Analytical Instrument Division)

Interferometer

Riken Keiki Fine Instrument Co., Ltd.

Union Industrial Equipment Corp.

Ion Gau_e

Andar Corporation

Canal Industrial Corporation

Edwards High Vacuum, Inc.

Fredericks Company

General Electric Company

(Vacuum Product Business Section)

Granville-Phillips Company

Mine Safety Appliances Company

Perkin-Elmer Corporation
Ultek Division

Mass Spectrometer

Aero Vac Corporation

Andar Corporation

Associated Electrical Industries

Distributed and Maintained by Picker-Nuclear
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Trade Name

Lira

Televac

Billion-Aire

Minimass



Mass Spectrometer

Manufacturer

The Bendix Corporation

Scientific Instruments Division

Consolidated E!ectrodynamics Corp.

Subsidiary of Bell & Howell

Edwards High Vacuum, Inc.

Electronic Associates, Inc.

General Electric Company

(Vacuum Products Business Section)

Granville-Phillips Company

Japan Vacuum Engineering Co., Ltd.

National Research Corporation, Subsidiary of

Norton Company (EquipmentDivision)

Perkin-Elmer Corporation

Ultek Division

Sloan Instruments Corporation

Tenvac, Incorporated

20th gentury Electronics 3 Ltd.

Vacuum Instrument Corporation

Varian Associates

Vacuum Division

Varian Mess Analysen Technik GmbH

(Heraeus-Engelhard Vacuum_ Inc. distributor)

Veeco Instruments, Inc.

Particle Detector

General Electric Company, Materials Engineering

Laboratory, Research and Development Center

Phoenix Precision Instruments Co., Inc.

Pressurized CO 2

General Air Products Corporation
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Trade Name

Spectrascan

Manumatic

Centronic

Test-King



Pressure Chan_e (Gas)

Manufacturer

Accessory Controls & Equipment Corp.

Consolidated Electrodynamics Corp.

(Subsidiary of Bell & Howell)

Datametrics, Inc.

Decker Corporation

Granville-Phillips Company

Moak Machine and Foundry Company

MKS Instrumentsj Incorporated

Ruska Instrument Corporation

Starr-Kap Engineering Company

Texas Instruments, Inc.

Trans-Sonics, Inc.

Wallace & Tiernan, Inc.

Whittaker Corporation
Pace-Wiancko Division

Trade Name

Barocel

Baratron

Air-Chek

Datametricsj Inc.

Starr-Kap Engineering Company

Pressure Chan_e (Liquid)

Barocel

Leak Chek

American Design, Inc.

MoakMachlne & Foundry Company

Pressure - Water

Fisher Research Laboratory

Goldak Company_ Inc.

Sonic - Sonic Range

Audlo-Scope &
Master Electronic Witch__

Dual-tronic
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Sonic - Sonic Range

Manufacturer

Marcol, S. A.

(M. Paquet & Co., Inc. - distributors)

Minear Scientific Instruments

Joseph G. Pollard Company, Inc.

Schneider Manufacturing Company

Tinker & Rasor

(Detectron Division)

Sonic - Ultrasonic Range

Burnett Electronics Lab, Inc.

Dawe Instruments

Euphonics Industries, Inc.

(The Elwood Corporation is the sole

distributor)

Fisher Research Laboratory

Fluid Data, Inc.

Goldak Company_ Inc.

Hewlett Packard Company

Delcon Division

Lumidor Products Corporation

Techsonics, Inc.

Tel Air Products Corp.

Spark Coil

The Welch Scientific Company

Thermal Conductivi_

Bacharach Instrument Divison of

American Bosch Arma Corp.

Trade Name

Airsonic

Leakscope

Globe Geophone

Leakdata

Hunter

Detec-tor

Son-Tector

Tel-A-Leak
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Thermal Conductivity

Manufacturer

Beckman Instruments 3 Inc.

Devco Engineering_ Inc.

Edwards High Vacuum_ Inc.

Gas Analysis Systems_ Inc.

Gas Purifying Materials Co._ Inc.

Gow-Mac Instrument Company

Loenco_ Incorporated

The Matheson Company_ Inc.

Teledyne_ Inc.
(Analytical Instruments Division)

Uson Corporation

Tracer - Halosen

Bacharach Instrument Division of

American Bosch Arma Corp.

Devco Engineering_ Inc.

General Electric Company

(Instrument Department)

Thermal Industries of Florida_ Inc.

Tracer - Radioactive

Sierra Engineering Company
Materials - Research Division

Tracer - Smoke

Superior Signal Companyj Inc.

Beckman Instruments_ Inc.

Ultraviolet Absorption
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Trade Name

Therma Bridge

Analograph

Loenco

Leakator

Radioflo



Ultraviolet Absorption

Manufacturer

Honeywell, Inc.

(Apparatus Control Division)

Teledyne, Inc.

(Analytical Instruments Division)

Trade Name

_olumetrie Displacement

Aerojet-General Corporation

(Aerometrics Division)

Volumetrics
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURERS :

OUTPUT SIGNAL

IMPEDANCE :

RANGES :

SENSITIVlTY:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

LIFE EXPECTANCY:

PORTABILITY:

SIZE :

WEIGHT:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Bubble (Liquid Applicant)

16 firms

Visual - Liquid will bubble.

Does not apply

Maximum claimed 1 x 10 -5 cc/sec.

Good

Almost instantly to, l minute.

Min. -65°F Max. 212°F

Does not apply

Shelf life one year generally

Hand carry

4 oz. to 55 gallon drums

Usually 4 oz. bottles. Also available up to 500 Ibs.

Max. 26 years

.70¢/4 oz. to $5/gal.

Stock approx. I week

Usually is non-inflammable 3 non-toxic3 leaves no residue; and

can be obtained to meet military specifications.

Can be formulated to be compatible with particular fluids or

gases.

Solutions are available which are stable up to approximately

750°F.

°
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-?-._ GENERAL SUMMARY

OPERATING PRINCIPLE :

MANUFAC_JRE RS :

SPECIFICITY:

EXCiTA._ON :

OUTPUT SIGNAl.

IM2EDANCE:

RANGES:

SENSITIVITY:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

PORTABILITY:

SIZE:

WEIGHT:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

LEAK DETECTOR CHARACTERISTICS

Catalytic Combustion

14 firms

One unit is specific for hydrogen. 31 units for combustible

gases and vapors.

9 units l15v 60 Hz

23 units battery operated, some rechargeable.

Various combinations of visual sign audible signal, panel meter

and output for recorder.

0 - 1.0% concentration to 0 to 100% LEL combustible gases.

1.0 cu. ft./hr., I ppm, 1% full range (0-i.0 L.E.L.)

+1% to 5% of full scale

One to 30 seconds

Normal environment does not affect performance of most units.
One unit sensitivie. To i0 G's vibration.

No

Replace or recharge batteries periodically.

Sensor - one year. Instrument - 5 to 20 years.

8 units hand carry

4" x 8" x I0" to 15" x 17" x I0"

1 3/4 Ibs. to 60 Ibs.

1 year to 20 years

$75 to $1200

Stock (I week) to 3-6 months

Units are available with accessories for special applications.
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OPERATINGPRINCIPLE:

MANUFACTURERS:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

SENSITIVITY:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

MAINTENANCE:

LIFE EXPECTANCY:

PORTABILITY:

SIZE:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Chemical Indicators - Dye Visible Dye Penetrant

Fluorescent Penetrant

9 firms

Variety of ultraviolet lamps for use with fluorescnet

penetrants. Requirements are from 90 v dc to llSv ac.

Visible or dye fluorescent. Photocell readout systems

available.

Smallest f%aw detectable is 75 millimicrons and leaks down
to I x i0"" std. cc/sec.

Good

Dwell time for penetrant 2-15 minutes for developer an
additional 5-15 minutes.

Greater sensitivity is obtained when dyes are used with

ultraviolet lamp. Temperature range 60°F to 212°F.

None

Shelf life - i year to indefinite

Penetrants are usually in kit form - hand carry

Penetrant kits are usually packaged 3 or 4-12 ounce spray cans.

Up to 16 years

Penetrants kits are $22.50 to $150.

Usually from stock - I week.

Liquid and fluorescent penetrants detect cracks_ flaws and

porosity in ceramicsj plastic and metals.

Process requires application of penetrant_ then em_Isifier_ and

then a developer solution.

Some preparation qualify under MIL-I-25135C 3 MIL-I-6866B; and

NAVSHIPS 250-1500-1 specifications.
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OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

EEMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Chemical Indicator - Dye - Pressurized

I firm

None

0-5000 psi

Varies with time and pressure applied

Colored fluid penetrates surface.

Varies inversely with size of leak

Indefinite

2" x 2" x 5" container

4 ounces, plastic bottle

Yes

20 years

$1.15 for 4 ounces to $18.40 for one gallon

Stock

An intensely colored oil is circulated through the system.

Leaks are detected by colored spots appearing on the outside

of the system at the location of the leak.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURERS :

SPECIFICITY :

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

RANGES :

SENSITIVITY :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

MAINTENANCE :

LIFE EXPECTANCY:

PORTABILITY:

WEIGHT :

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Chemical Indicators - Reagents

8 firms

Gases

120v ac

One type of detection tube requires visual inspection.

Other units provide an electrical output.

I ppm to 30% by volume

0.I ppm is maximum

2 minutes to 5 hours - varies inversely with concentration.

Compensation for temperature and humidity is usually built

into the equipment.

As needed

Single test per unit to indefinite

Hand carry

I to 70 ibs.

Up to 25 years

$I00 to $5000 with pump and case. Tubes $6.50 per I0

i week to 3-6 months

Some products consist of a detector tube that is used for

a single test, others are colorimetric sensors and still

others are photoelectric devices that detect color change.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURERS :

SPECIFICITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE:

RANGES:

SENSITIVITY:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

PORTABILITY:

SIZE:

WEIGHT:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

Electrochemical Cell

7 firms

Strong oxidents (ozone, chlorine, etc.) Oxygen N204, UDMH
and hydrazines, depending on model.

Three units are galvanic cells, others require 120v 60 Hz

or battery power.

Panel instrument and dc voltage

0-5% to 0-50%. Oxygen or 0-5 ppm to 0-I00 pphm by volume

(oxidants)

0.05% 02; I pphm by volume of ozone, chlorine and iodine;
1/2 ppm for oxidizers.

1% to 5% full scale

5 to 50 seconds

30°F to 125°F

No

Recharge cells periodically (20 days to 3 months)- replace

cell annually.

8 to 12 months

Yes

3" x 4 1/2" x 5 3/4" to 16" x 18" x I0"

2.5 to 67 ibs.

1 1/2 to 4 years

$245 to $3000

2 weeks to 4 months
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MAkU/FACTURE RS :

SPECIFICITY :

RANGES :

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

SENSITIVITY :

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

MAINTENANCE:

PORTABILITY:

SLZE:

WEIGHT:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Flame Ionization (Hydro-carbon gases are ionized in a

hydrogen flame, carbon ion current is measured with an
electrometer circuit.)

3 firms

Hydrocarbon gases and vapors in air.

Multi-ranges 3 to 8

l15v 60 Hz

Indicating panel instrument - 5 and 25 my dc.

Varies with composition. Typical maximum sensitivity =

2 ppm methane in air; 25 ppm propane in air

1% to 2% of full range

2 to 4 seconds

Sample in air, requires 18% oxygen

No

Maintain hydrogen supply

Both portable and stationary models.

Portable unit 15" x 16" x 9 3/4"

Portable unit 30 Ibs.

I to 3 years

$1445 to $ii,000

2 weeks to 6 months

Useful for measuring hydrocarbons in trace concentrations.
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OPERATINGPRINCIPLE:

MANUFACTURER:

SPECIFICITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RANGES:

SENSITIVITY:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

PORTABILITY:

SIZE :

WEIGHT:

TIME ON MARKET:

PRICE :

REMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Flow

7 firms

Units are available for either gases or liquids

28v dc - Hand pump

Audible - visual (Frosting at leak) - Meter - Digital.

0.001 std. cc/sec, to 3 x 105 std cc/min. Air - 0.001

to 0.I gpm liquid

1 x 10-2 cc/sec. (air) and 30 std. cc/min. Oxygen

Best is 0.1% of full scale

0.I second to I0 seconds

Accuracy is affected by environmental temperature

Usually yes. Some larger units are not.

I0" diam. x 30" to 4" x 4" x 5" (sensor)

28 oz. to 300 Ibs.

Up to 15 years

$99 to $1295

Many modifications are available to meet application

requirements,
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE:

MANUFACTURER:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

PORTABILITY:

SIZE:

WEIGHT:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

Gas Density (A gas density switch - temperature com-

pensation achieved by a trapped volume in a reference

bellows).

1 firm

Provides electrical contacts only

Switch action

.001 second

Designs available for use at environmental temperatures
of -85 ° to + 400°F

Yes

None

3 to 5 years

Yes

I" diam. x 2"

2 ounces

6 years

$60 to $200

4 to 8 weeks
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OPERATING PRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

MAINTENANCE :

PORTABILITY:

TIME ON MARKET:

SIZE :

WEIGHT:

PRICE :

REMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Halide Torch - Flame Color (Flame color change in presence

of halides)

7 firms

Non-combustible refrigerant gases or vapors - Halides_

halogenated hydrocarbons.

Largest is 15 to 1,000,000 ppm in air

Maximum is 15 ppm

Photocell type units require l15v_ 60 Hz. Torch type

require no power.

Change in color of flame - Panel meter for photocell type

units.

2 seconds

Useful over temperature range from -65 ° to +150°F

Change gas cylinders as needed

Hand carry

Longest is 23 years

Max. 15" x 16" x 9 3/4" to 1 1/4" diam. x 6" long

1/4 to 35 Ibs.

$8 to $16 for visual type; $715 for photocell type

One Unit uses an electric arc instead of flame, another

unit burns alcohol and other units burn compressed gas.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURERS :

SPECIFICITY:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

PORTABILITY:

REMARKS :

Imme rs ion

2 firms

None

Leaks as small as i x 10-7 std. cc/sec.

None required

Gas bubbles

Usually not portable

Leak detection systems are often designed for specific

components in production lines.

Immersion fluids can be water or higher boiling-polnt

liquids.

Components being tested can be pressurized with a gas

or heated to increase pressure of sealed-in gas.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE:

F_ANUFACTURERS :

SPECIFICITY:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT S IGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Infrared Absorption

5 firms

Generally specific to nitrous oxide gases. Selectivity

can be obtained by various filters of the infrared beam.

Set to customers requirements. Typical full ranges:

100ppm N20 _ 50 ppm CO

Locates leaks to I0_2 lusec (1.28 x 10-5 std. cc/sec.)

l15v 60 Hz or 50 Hz. Others available.

Panel meter (milliameter or millivoltmeter)

+1% full scale
m

5 to 30 seconds (full response).

Temperature range: 30 to 120°F

No effect from normal humidity

Not usually but can be made so.

6 month interval. Check span and zero daily.

I0 years

12" x 12"x 19" to 37" x 38" x 35"

50 to 200 ibs.

Some units are portable

I0 to 15 years

$2400 to $5400

60 to 120 days

Used as leak detector with nitrous oxide tracer gas.

Can detect cyanogen_ hydrazine 3 hydrogen:cynide_ nitric

oxidej H2S J CO_ CO 2 and hydrocarbons.

Variations and modifications are available to conform

with customers requirements.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE

MANUFACTURERS :

SPECIFICITY:

RANGES :

SENS ITIVI TY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Interferometer

2 firms

For gases. Unwanted background gases can be filtered

OUt.

As low as 0 to 270 hydrogen, methane, propane, etc.

As low as 0.02% by volume.

l15v 3 60 Hz or battery

Panel meter and audible and visual alarm.

+5% full scale

3 seconds

Designed for use at ambient temperature of -30 to +45°C

No

Nominal

I0 years

2 1/2" x 3 i/2" x 7 1/2" to 8 5/8" x 7 1/8" x ii 7/8"

3 1/2 to 15 Ibs.

Yes

I0 years

$15oo

3 to 4 weeks

The displacement of interference light fringes produced

by the optical path difference between the sample gas

and an air reference, is measured by a photo-electric

circuit.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE:

MANUFACTURERS :

SPECIFICITY:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Ion Gauge

6 firms offer gauges and 2 firms offer accessories.

For gases. Can be made to respond to a specific gas.

I0 to I0"II torr in decade steps; 0-3 ppm to 0-50 ppm

of Hydrazine and UDMH.

0.5 ppm Hydrazine_ 0.15 ppm UDMH.

l15v 60 Hz; batteries (some rechargeable)

Panel meter 3 voltage output; signal lamp

Best is +1% full scale

15 seconds

Designed for normal ambient temperatures and humidity.

Most do not but one unit is fail safe.

Replace batteries or recharge periodically,

5 years to indefinite

4 1/2" x 3" x 2" to 19" x 7" x 9"

1 1/2 to 45 Ibs.

Most units are portable

3 to 8 years

$350 to $1495

Stock to 60 days.

Probe gas is detected within an evacuated test system.
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OPERATINGPRINCIPLE:

MANUFACTURER:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Mass Spectrometer

19 firms

All gases, mass I - 600. Varies between units.

Multirange taps up to ii per unit.

Abundance - 0.02 PPM

Partial Pressure - 10 "15 tort (N2)
Helium 5 x 10 -13 std. cc/sec.

I0 amps per torr for N2

I05/125v 3 220/240v

Panel meter; audible signal; I microamp to I ma;

I0 mv to 10v dc

Short term: _1% to _5%; Long term: _5% to _I0%

0.I to 1.0 sec.

Suited for normal factory environments - Analyzer tubes
useable to 200°C and bakeable to 400°C

20 units - yes; 6 units - no; I unit - can be

Units va / from once every 2, to once every 12 months

Vary from 5 to 15 years

Minimum - W = II inches - H = 7 inches - Depth = I0 inches

Maximum - W = 7 feet - H = 5 feet - Depth = 3 feet

From 12 Ibs. (less magnet) to 1450 ibs.

Movable

From 1 to I0 years

From $1975 to $27,000

From stock to 4 months

Many accessories are available.

for one gas.

Some units are specifically_ i
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OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RANGES:

SENSITIVITY:

RESPONSETIME:

DOESIT FAIL SAFE:

MAINTENANCE:

PORTABILITY:

SIZE:

WEIGHT:

TIMEONMARKET:

PRICE:

DELIVERY TIME:

REMARKS:

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Particle Detector

Gases and vapors converted to particles and counted in

chamber or forward scattering of light is detected.

2 firms

Usually not specific but it is possible to detect

specific gases with use of special chemical converters.

llSv 60 Hz

Panel instrument

I00 to .001_ grams/liter of 0.3 micron particles.

Examples: Halocarbon refrigerant - 2 PPM; sulphur dioxide

-.001 PPM unsymmetrical dymethyhydrazine - 0.i PPM

I to 5 seconds

No

Detector chamber must be clean - valve requires lubrication

every 2000 hours.

Movable on roller table

Approximately 22" x I0" x 20"

90 to 127 Ibs.

6 to 13 years

$2213 to $4800

4 to i0 weeks

Useful for detection of clean room seals and noxious gas
leaks.

Can detect phosgenej unsymmetrical dimethyl hydrazine_
chlorine and nitrogen dioxide.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURER:

MODEL NO. &

TRADENAME:

OUTPUT SIGNAL

IMPEDANCE :

DOES IT FAIL SAFE:

MAINTENANCE:

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

EIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE

DELIVERY TIME :

REMARKS :

Pressurized (CO 2) - Frosting of atmospheric moisture

One firm

Test-King

Pressure gage, audible signal and visual observation of

frosting of moisture in the area of a leak.

Yes

Tank requires periodic recharge with CO 2

Yes

Tank requires periodic recharge with CO2

20 to 30 years

25" x 6 3/4"

40 ibs.

Can be hand carried

15 years

$9O

2 weeks

Test system is connected to the regulator of a pressurized

CO 2 tank. Tank may be removed for recharging or for use
elsewhere _hile leaving system being teste_ under pressure.

Detects leaks by frosting of atmospheric moisture, provides

an audlble leak signal and a system pressure gage. Meets all

Interstate Commerce Commission regulations.
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OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Pressure Change - Gas

13 firms

None

0-0,0001 tort to 0 -I0_000 psi differential

0 - I torr to 0 - I00 psi absolute

0.0000i torrj maximum

Some units require only fluid pressure sourcesp others

require I05-125v_ 50 to 400 Hz and 220-240v_ 50-60 Hz.

Varies with unit: Dial gage_ panel meter (analog and

digital)_ voltages to 10v dc and lOv ac FM.

Maximum is 0.002% FS

3 milliseconds to 2 minutes

Most units are temperature sensitive

No

Some manufacturers offer maintenance contracts.

Normally; zero check and periodic calibration.

Up to 20 years

From 6" x II" x 7" to 25" x 22 'bx 19" - some are in two

parts.

From 8 Ibs. to 175 Ibs.

Most are portable

Units vary from I to 20 years

From $670 to $6000

From stock item to 12 weeks

Most designs have a pressure sensing cell and a remote
electronic unit.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURE R:

SPECIFICITY:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

REMARKS :

Pressure Change - Liquid

2 firms

None

Basic ranges from 0-I torr to O-I00 psi differential with

a 9 position pressure range selector switch which scales

sensitivity from XI to X0.0001.

-5
I x I0 tort, maximum

llSv_ 5 to 400 Hz

Digital panel indicator and analog output _5 or _10v dc

3 milliseconds at 760 torr

Pressure transducer: 0 - 150°F

Electronic system: 0 - ll0°F

No

Electronic System: 8 3/8" x 14" x 9 1/2"

Pressure Transducer: 3 1/4" x 3" x 3 3/4"

25 ibs.

Yes

Electronic System: $I050 to $2050

Pressure Transducer: $890 to $1200

Complete System: $2750

For some units the system liquid must be electrically

non-conductlng.

Pressure transducers and leak testing systems require

vacuum back-filling with appropriate system liquids.

--i-
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE:

MANUFACTURERS :

SPECIFICITY:

EXC ITAT ION:

SIZE :

TIF_ ON MARKET:

REMARKS :

Pressure - Water

2 firms

None

Requires pressurized hydraulic systems.

Tape is 2" wide

(Tape) - Less than one year

Water leaks are observed visually in one model and

by electrical continuity of a water soluble tape in
another.

Use of rust inhibitors in water are advocated.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Sonic - Sonic Range

7 firms

None

Up to 17 kHz. Some have multiple ranges.

Unit can detect air escaping through a hole 0.0005"

in diameter at a system pressure of 80 torr.

Self contained battery. Some units

Visual and audible signals

Up to the speed of sound

Normal atmospheric humidity and temperature will not

affect performance.

No

Battery replacement

5 to 25 years

From 3" diam. x 5" long to 15" x i0" x II"

From 5 oz. to 20 Ibs.

Yes

From i to 50 years

From $6.50 to $395

Maximum is 2 weeks

Some units are simple stethoscope types while others are

much more sophisticated and provide means for amplification

and tuning to frequency of interest.
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OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIEONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Sonic - Ultrasonic Range (36 to 44 kHg).

i0 firms

None

Can detect leaks down to 0.001" diameter_ pressurized

at 2 psi at a distance of one foot.

Self contained battery

indicating meter and audio signal (headphones)

Speed of sound

Designed for use in normal ambient atmosphere.

No

Replace internal batteries after 150 to I000 hours
of use.

From 1 1/2" diameter x 9" long to 12" x 8" x 5"

From 12 oz. to Ii ibs.

Yes

From 1 to 30 years

From $130 to $850

Maximum time is 3 weeks

All audible sounds are filtered out and the ultrasonic

sound made by a fluid leak through an irregular orifice

is detected and converted into audible sound.
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFAC TUBER:

SPECIFICITY :

EXC ITATI ON :

OUTPUT SIGNAL

IMPEDANCE :

SIZE:

PORTABILITY :

PRICE :

REMARKS :

Spark Coil (Telsa Type)

1 firm

For detecting leaks in glass vacuum systems.

115 v ac or dc

A glow appears in a vacuum system when the coil

probe approaches a system leak.

2" diam. x 12" long

Hand held probe

$16.75

Not recommended for thin wall systems.

--i-

29-23



OPERATINGPRINCIPLE:

MANUFACTURERS•

SPECIFICITY:

RANGES:

SENS IT IV!TY:

EXCITATION

OUTPUT SIGNAL

.IMPEDANCE :

REPEATAB IL ITY:

RESPONSE TI'ME:

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

S IZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME :

REMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Thermal Conductivity

i0 Firms

Selectivity to specific gases can be achieved with
suitable filters.

1/2 to I0 oz/yr, of RI2 gas - 10 ppm H2S and others to
100% of gas of interest.

Maximum is 1 x 10 -5 std cc/sec helium and I ppm.

llSv; 60 Hz or internal batteries (some rechargeable)

Panel instrument, signal lamp_ tone, dc signal

Vary from 1/2% to 25% Full Scale

Vary from 1/2 sec. to several minutes

Designed for use in normal ambient environment.

Some units de

Replace batteries periodically. Span check monthly for

high sensitivity units.

Vary from 5 to 20 years.

From 3" x 4" x 9" to 15" x 7" x i0"

From A to Ii0 ibs.

Most units are portable

From i to 15 years

From $165 to $53000

From I week to 4 months

Usually for use in measuring concentrations in by-

gaseous mixtures.
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OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Tracer- Halogen

4 firms

Halogen gases

From 1 to I0 ranges

Maximum is I x 10-9 std. cc/sec. (6 x 10 -6 oz./year) R-12

115 or 230v_ 60 Hz or internal batteries

Lamp, panel meter or audible signal

Approximately I second

Suited for use in a temperature environment from 0 to 55°C

(avoid areas with high concentrations of halogen gases

and corrosive vapors and salt spray.)

Most do not.

Replace batteries periodically. Replace sensing element

when required.

Depends on exposure time of element to desensitizing agents.

From 6" x 3" x 2" to 20" x 14" x II"

From 1 1/2 to 20 Ibs.

Yes

From I to 15 years

From $90 to $1115

From I to 6 weeks

Leak standards are available which permit quantitative

calibrations. Detectors must not be used in the presence

of flammable vapors.
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OPERATING PRINCIPLE :

MANUFACTURER:

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

DOES IT FAIL SAFE:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Tracer - Radioactive

i firm

Krypton 85 (Krypton-85 and Nitrogen mixture)

Radioflo Model 44-462

I x I0 -II std. cc/sec.

l15v; 25 amps 3 60 Hz (50 Hz available)

Scintillation Crystal Counting Station

Yes

56 1/4" x 54 7/8" x 44"

Complete system: 3640 Ibs. (5 gallon Activation Tank)

No

12 years

Price on request
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GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

OPERATING PRINCIPLE :

MANUFACTURER:

MODEL NO. &

TRADENAME :

EXCITATION :

OUTPUT SISAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Tracer - Smoke

1 firm

Superior Smoke Candles and Superior Smoke Bombs

None required. Flame manually applied to fuse.

Visual observation and odor of escaping smoke through

leak.

Approximately 5 minutes

Should be stored below 65° humidity and 85°F

Yes

18 months

Four sizes from 1/2" x 1 3/8" OD to 14" x 1 3/8" OD

with burning time of 30 seconds, 60 seconds, three
minutes or five minutes.

1 1/2 oz. to I lb. each

Yes

14 years

$4.50 to $25.80 per dozen

2 weeks

After the smoke device is started a blower injects the

non-toxlc smoke into the system to be leak tested. Smoke

will be observed escaping from leaks. This method can be

used on large systems such as sewer lines. On smaller

systems a blower may not be necessary and merely insertion

of the smoke device is sufficient. Smoke volume normally

should be sufficient to fill an area 5 or 6 times that of

the test system. Various types of smoke devices available.

Smoke will not stain clothing nor corrode metal.

29-27



OPERATINGPRINCIPLE:

MANUFACTURERS:

SPECIFICITY:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME •

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Ultraviolet Absorption

3 Firms

Not usually designed for specific gases but this can be

achieved by selecting specific light sources and filter

elements.

From ppm to 100% concentration

± 1% Full Scale

llSv, 50 or 60 Hz.

Voltage or current signal; panel instrument

± 1% to ± 15%

i to 30 seconds

Designed for use over environmental temperature range
of 40-110°F.

No

Annual check of electronic tubes and standard cell

in one unit.

5 years

Amplifier 8" x Ii" x 5" to 9" x 8" x 18"

Analyzer 6" x 6" x 19" to 29" x 8" x i0"

30 ibs for portable unit

One unit is portable

2 years for portable unit

$600 for the portable unit

4 weeks for portable unit
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OPERATINGPRINCIPLE:

MANUFACTURER:

SPECIFICITY:

SENSITIVITY:

OUTPUTSIGNAL
IMPEDANCE:

ENVIRONMENTEFFECTS:

DOESIT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

GENERAL SUMMARY

LEAK DETECTOR CHARACTERISTICS

Volumetric Displacement

2 firms

None

1 x 10 -5 std. cc/sec, is maximum

Liquid level in a calibrated sight glass in one unit

and a digital indicator in the other.

Units are sensitive to environmental temperature.

No

None required

250j000 cycles

Approximately 6" x I0" x 3"

4.8 and 12 Ibs.

Yes

2 years for digital unit

$395 for digital unit

Digital unit is in stock
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Section 30

LEAK DETECTORS - THEIR CHARACTERISTICS
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

MAINTENANCE :

LIFE EXPECTANCY:

PORTAB IL ITY:

TLME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Accessory Controls & Equipment Corporation

Pressure Change-Gas (detects pressure difference between

test system and a trapped supply)

ACE-234

-20 to +20 inches of water differential pressure

0-300 psi - compressed gas

Reading on pressure gage (mechanical)

Temperature sensitive - large air currents should be

prevented from passing over system or leakage detector.

As required

Depends on care and useage

Can be hand carried

I0 years

$670

6 - 8 weeks

Temperature of test system and detector must not vary

during test.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPE ClFIC ITY:

MODEL NO. &

TRADENAME:

SENSITIVITY:

EXCITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PORTABIL ITY

TIME ON MARKET:

PRICE :

DELIVERY TIME :

Aero Vac Corporation

Mass Spectrometer

All gases, mass 2 to 200

Model 370, Process Control Analyzer

10 "12 torr (I0 ppm)

105 to 125 volts ac, 15 amps

X Axis 0-10v dc; Y Axis 0-100my dc

Less than i second

Yes

Approximately once every three months

Ten years

24" x 24" x 60" (WDH)

450 ibs.

On casters

18 months

$12,400

One month
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

DOESIT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

Aero Vac Corporation

Mass Spectrometer

All gases, mass2 to 300

Model No. 685

Mass 2 to 300

10"13 tort (i.0 ppm)

I05-125v ac

X Axis O-10v de; Y Axis O-!00mv dc

Less than 1 second

Yes

Approximately once every 3 months

I0 years

WDH48" x 24" x 60"

600 lb.

On casters

2 years

$163000

4 months
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MANUFACTD-RE R:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRI_ :

DELIVERY TIME :

Aero Vac Corporation

Mass Spectrometer

All gases_ mass I to 500

Model No. 686

Mass i to 500

10 -13 tort (0.02 ppm)

i05-125v ac

X Axis 0-10v dc; Y Axis 0-100my dc

Less than i second

Yes

Approximately once every 3 months

I0 years

WDH 60" x 24" x 60"

I000 lb.

On casters

2 years

$27,000

4 months
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MANUFACTURER:

OPERATLNGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSE TIME :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PORTAB ILITY :

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Aero Vac Corporation

Mass Spectrometer

All gases, mass 2 to 70

M270

Mass 2 to 70

I0 -I0 tort (20 ppm)

I05-125v ac 15 amps

X Axis O-lOv dc; Y Axis O-lOmv dc

Less than 1 second

Yes

Approximately once every 3 months

I0 years

WDH 24" x 24" x 60"

450 ibs.

On casters

4 years

$8900

Stock

Versatile. Simple conversion from leak testing af

pressurized or evacuated systems to high vacuum gas

analysis and vice versa.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADE_ :

RANGES :

SENS IT IV ITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

SIZE :

PRICE :

REMARKS :

Aero Vac Corporation

Mass Spectrometer

Model AVAI Residual Gas Analyzer

Mass numbers 2 to 70 standard; option of extending to
i and to 200.

Sensitivity range for Nitrogen: I0"I0 torr

Meter indication of pressure_ mass scanj and emission.

Recorder output: i0 MVF. S.; pressure: i0 VF.S. mass.

30 secs. and 2 min. per range

Cabinet 21" x 23" x 13" Rack Panel 19" x 8 3/4"

$2940

Spectrometer tube is bakeable to 400°C.

Maximum operating pressure: 10 -3 torr.

Total pressure measurement range: 10-3 to I0-I0 torr.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADE NAME :

RANGE S :

SENS ITIV ITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

SIZE :

PRICE :

REMARKS :

Aero Vac Corporation

Mass Spectrometer

Model AVAI-100 Residual Gas Analyzer

Mass range from 2 to 200

-12

Sensitivity range for Nitrogen: i0 tort

Meter indication of pressure, mass scan, and emission.

Recorder outputs: i0 my FS pressure; I0 VFS mass.

8 min. per range

Cabinet: 21" x 23" x 16 1/2" Rack Panel: 19" x 12 1/2"

$4900

Spectrometer tube is bakeable to 400°C

-i-
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

SENSITIVITY:

OUTPUTSIGNAL
IMPEDANCE:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

SIZE:

WEIGHT:

PORTABILITY:

REMARKS:

Aerojet-General Corporation- Aerometrics Division

Volumetric Displacement

None

Displacement Leak Meter

0.008 std cc/min.

Displacement of a liquid in a calibrated sight glass.

+ 40 to + ll0°F

No

4" x 6" x 8"

12 ibs.

Yes

The detector design incorporates a back pressure balancing

principle which practically eliminates back pressure to

the leakage source.

It can be used to measure leakage rates in air or any
inert gas system. In use the detector is connected to

a sealed cavity formed around the area of a pressurized

system being leak tested (seals 3 assemblies etc.).
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biANL"FACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS :

Alamo Mill Supply Company

Exclusive Agent: Alamo Specialty Company

Bubble (Liquid Applicant)

KA-OX-10, ALSPEC

(Federal Stock List No. 6810-286-6019_ MIL-25567A)

Visual - White bubble formation in leaking area

Type I: +33°F to +180 ° , Type II: -65 ° to +32 °

Yes

Indefinite

4 ounce polyethylene squeeze bottle.

5 gallon polyethylene container.

4 oz. and 40 Ibs.

Yes

5 years

$2.50 per 4 oz. polyethylene bottl_$35.00 per gallon

standard pack 25-4 oz. bottles per case.

Stock

This product is an inert compound developed for fast,

safe positive detecting of leaks in pressurized gas systems.
Above formula is for use with oxygen system and most other

gases. Other formulas are available for specific systems

such as chlorine 3 air conditioning, telephone cables and LP

gases.

--l-
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SIZE :

TIME ON MARKET:

REMARKS :

American Design, Inc.

Pressurized - Water -(Conducting Tape)

Tape is water soluble

Leak Detection Tape

Tape is 2" wide

3 months

Tape is multilayered. A strip of aluminum foll is

electrically insulated from the test system by a strip

of water - soluble paper. A wider strip of adhesive tape

permits adhereing the assembly to the surface being leak

tested. An electrical continuity circuit is required

for detecting a loss of the water soluble paper. The tape

has been developed by the Boeing Company on a NASA program.
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_LANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

SIZE :

PORTABILITY:

PRICE :

REMARKS :

American Gas & Chemicals_ Inc.

Bubble (liquid applicant)

"Leak-Tec"

i x 10-5 STD. cc/sec or 0.013 cubic feet/year

Bubble

Almost instantly

Formulae available to -65°F.

4 ounce plastic container

Can be hand carried

Approximately $1.50 each

non-explosive
non-flammable

non-injurious

non-corrosive

Typical formulas available -

See "REMARKS"

For detection of gas and air leaks

in pressurized systems. Special formula

available for vacuum testing.

Leave no residue.

(+35 to) . MIL-L-25567A(ASG) (-65 °)
#OX-65-C for oxygen (.65UF)

Type II

#16-OX for oxygen (regular) - MIL-L-25567A(ASG) (STD)

Type I

#577-V for vacuum testing

#177 for refrigeration_ air conditioning (not for ammonia)

eleven other chemical formula available.
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MANUFACTURE R:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

REMARKS :

American Gas & Chemicals, inc.

Bubble (Leak Detection Liquid)

FM Inert

Will detect leakage rates down to 10 -5 standard

cc/sec.

Visual (Bubble)

Thermal stability: approximately 750°F

For testing handling and storage equipment for missile

fuels and oxidizers when the equipment is pressurized

with air or other gas before filling with fuel.

Liquid and residue are inert to the following reagents:

Con_nercial concentrated nitric acid

White fuming nitric acid (cold and hot)

907ohydrogen peroxide

Commercial concentrated sulfuric acid (cold or hot)

Commercial hydrazine and UDMH

Liquid oxygen
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENS IT IVITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

REMARKS :

American Gas & Chemicals_ Inc.

Chemical Indicator (Reagent)

Water

BUG-IT W-15

Visible detection to i/i0_000 of 1 cc. Black light

inspection increases sensitivity to 2/1005000 of icc.

Visual - Water is indicated by the appearance of a red

pattern on the white surface. See remarks.

Immediate

BUG.IT is supplied in sheet form. It should be wrapped

around the area of suspected leakage, securing it with

the pressure sensitive adheshive.

The color change is irm_ediate and irreversible.

With experience_ the red pattern size can be interpreted

quantitatively.

--i-
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

REMARKS :

American Gas & Chemicalsj Inc.

Chemical Indicator (Reagent)

Freon

BUG'IT FR-20

Visible detection to 4/103000 of icc.

Visual - Freon is indicated by the appearance of a blue

pattern on the surface. See remarks.

Immediate

BUG-IT is supplied in sheet form. It should be wrapped

around the area of suspected leakage, securing it with

the pressure sensitive adhesive.

The color change is immediate and irreversible.

With experience, the pattern size can be interpreted

quantitatively.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

REMARKS:

American Gas & Chemicals3 Inc.

Chemical Indicator (Reagent)

Hydrazine and other nitrogen containing compounds such

as hydroxylamine also to components of tobacco smoke.

BUG-IT H-25

Indicates presence of 5 PPM of hydrazine in the

atmosphere by color change in five minutes. An actual

leak of hydrazine vapor of 1.6 x 10 -4 cc/sec is indicated
after several minutes. Smaller leaks down to I x 10 -6

cc/sec require proportionately longer testing time.

Visual - see note above.

5 minutes

BUG. IT H-25 paper is supplied in 4" x 5 1/2" sheets

with "band-aid type adhesive ends which can be cut to

required size. Develops an irreversible orange pattern

on contact with hydrazine vapors. (Color changes to

yellow at high vapor concentrations and on contact with

liquid hydrazine).

It is deactivated by ammonia and amine vapors.

--i-
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Mkk"JFACT_/RER:

OPERATINGPR_CIPLE:

SPECIF__CITY:

MODELNO. &
TRADENAME:

SENSITiVITY:

OI'TPUT SIGNAL

IMPEDANCE :

ENVIKONMENT EFFECTS :

REMARKS :

American Gas & Chemicals, Inc.

Chemical indicator (Reagent)

Fuel_ oil; hydraulic fluids and organic solvents.

BUG'IT Fi05

Develops an irreversible blue pattern on contact with

even a fraction of a drop (approx. 0.001 cc) of engine

fuel; oil, hydraulic fluids or any of a number of

different solvents. This response occurs most rapidly

with light hydrocarbons; but becomes more intensive with

heavy oils.

Visual - blue coloring; see note above

Operational temperature: -65°F to 250°F

BUG'IT is supplied in 4" x 5 1/2" sheets with a pressure

sensitive backing and can be cut to desired size. Can

be left in place indefinitely.
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MAN-_'FAC_JFER:

OPERATINGPRLNClPLE:

SPECIFICITY:

MOREL NO. &

TRADENAME •

SENS ITiV !TY:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

SIZE :

PORTAB IL iTY:

TiME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

American Gas & Chemlcals_ Inc.

Chemical Indicator (Reagent)

Engine fuels_ hydraulic fluids_ oils and organic solvents

JET/TEC 3 type A perforated

0.05 cc

Visual - develops an irreversible red pattern at the

leak source.

Temperature: -65°F to 380°F

2 1/2 inch x 4 feet strips (20 per package). Some

special sizes available.

Easily by hand

3 years

$38.50 (20 strips 2 1/2 in. x 4 1/2 ft.)

Stock

JET/TEC is a wrap-on foll backed asbestos leak detection

tape that locates leaks instantly. Supplied in strips 2 1/2"

x 4 1/2". Non-toxlc; non-corroslve and non-stalning.

The package priced above contains the required heat

resistance tape for fastening the strips.

30-17



--l-

MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME:

SENSITIVITY:

EXCITATION:

REPEATAB ILITY:

RESPONSE TIME-:

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET :

PRICE:

DELIVERY TIME :

REMARKS :

Andar Corporation

Mass Spectrometer

Helium

Series LD-300

2.6 x i0-II std. cc/sec, of helium

115/230 v.3 3 amp_ 50/60 Hz.

± 1Z

Instantaneous

Practically no influence

Yes

6 mo6ths intervals. (No o11, 6o llquld nitrogen, getter

ion pumped)

15 years

Cabinet 24" x 24" x 38"

300 ibs.

Mounted on casters

i month

$4600 and up

45 days

Is also able to detect gross leaks.

Optional equipment and accessories available.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PO RTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

Andar Corporation

Ion Gauge - Amplifier

LD-100

2 (high_ low)

I x 10.9 std. cc/sec.

Reading on microammeter

±0.1%

Instantaneous

Not affected except by extreme temperature and humidity.

No

Replace batteries every 6 months

Basic unit - 5 years exclusive of battery change.

1 3/4" x 3" x 4"

14 oz.

Can be hand carried

6 months

9250

From stock

Used for locating leaks in vacuum systems.

Unit is designed for use with ion gauge or ion pump

control unit. Detector amplifiers and displays

differential input voltage.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIV ITY:

EXCITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RE PE ATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME:

REMARKS :

Associated Electrical Industries

Distributed and maintained by Picker Nuclear

Mass Spectrometer (Residual Gas Analyzer)

Preferably helium, but can be used with all gases in

mass range 2-200.

MSI0

i000:I in seven ranges. High test range gives

sensitivity quoted below. Range extension accessories
available.

5 x 10-13 std. cc per sec.

I00 to 260 volts, 50/60 Hz - 150 watts

3" meter indication, i0 mV recorder at I00 ohm source.

±2 1/2%

0.6 secs. Faster response with pro-rata sensitivity
reduction.

Unaffected by 6% line voltage fluctuations. Unaffected

by humidity. Analyzer tube useable to 150°C and bakeable
at 400°C.

Yes

Annual service recommended.

17"W x 18"D x i0 I/2"H

Basic Instrument - 112 ibs.

Yes. Needs vacuum connection to test chamber or system.

6 years

$5290 f.o.b. New York

30 days

Above specification refers to basic instrument. A wide

range of vacuum and inlet systems and special purpose
accessories are available.
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MANUFACTURE R:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE :

SIZE:

WE IGHT:

P ORTAB IL ITY :

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Associated Electrical Industries

Distributed and maintained by Picker Nuclear

Mass Spectrometer (Partial Pressure Gauge)

Preferably helium. Can be used with all gases in

mass range 2-240.

Minimass

i00000:i in 9 ranges and decade multiplier.

i0 -II std. cc/sec for nitrogen

115-120 and 220-240v 3 50/60 Hz, ac 120 v amp

3" meter indication - 10mV recorder output

±3%

I second

Unaffected by humidity. Analyzer tube useable to 200°C

bakeable to 400°C

Yes

Annual service recommended

7 13/16"H x 19 3/4"W x 16 II/16"D

74 Ibs.

Yes. Needs vacuum connection to test chamber or

system.

1 year

$2650 f.o.b. New York

30 days

Instrument available in glass and metal analyzer

configurations.

--i-
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MAN-jFAC _cIRER :

OPERATLNG PRINCIPLE :

MODEL NO. &

TRADENAME :

RESPONSE TIME:

ENVIRONMENT EFFECTS :

SIZE :

PORTAB:LITY:

PRICE :

DELIVERY TIME:

REMARKS:

Automation industrles_ Incorporated

Sperry Products Division

Chemical Indicators - Dye

Sperry Penetrants - DP-400 Penetrant, DW-525 Developer

2 minutes to i0 minutes depending on material tested
and nature of defect.

Material should be at least 68°F and clean for best

results. Must be thoroughly dry before application
of penetrant.

Single 16 oz. spray can to 55 gallon drum

Can be hand carried

DP-400 Penetrant, single spray can - $5.00 or $11.00/gallon

DW-525 Developer_ single spray can - $5.00 or $7.90/galio_

From stock

Requires spray, brush, or dip of red dye. Dye is then

wiped off, developer is applied, and imperfections show

up as red marks. Depth of defects indicated by richness
of color and speed of bleed out.

Is non-toxlc.

One gallon covers 3000 sq. ft.
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MANUFACTURER: Bacharach Instrument Division of American Bosch

Arma Corporation

OPERATING PRINCIPLE: Catalytic Combustion

SPECIFICITY: Combustible gases and vapors

MODEL NO. &
TRADENAME :

Bacharach Gastron: Model 282 (Code 23-7059) for

combustibles_ and Model 310 (Code 23-7060) for H2

and combustibles.

RANGES : Model 282: 50 ppm to 25% natural gas

Model 310: 50 ppm to 5% hydrogen

SENS IT IV ITY: Model 282: Better than 50 ppm

Model 310: Approximately I0 ppm

EXCITATION: 5v, 4.0 amp.-hr, rechargeable nickel cadmium battery

OUTPUT SIGNAL

IMPEDANCE :

Audio earphone and meter. DC meter is 0-50 micro-amps.

REPEATABILITY: + 25%

RESPONSE TIME:

ENVIRONMENT EFFECTS:

2 seconds or less

Can be operated satisfactorily between -30°F and +130°F.

Storage limits between -60°F to 150°F.

DOES IT FAIL SAFE: Calibration kit provided to check overall operation.

MAINTENANCE : Recharge battery after I0 hours continuous operation.

Replace detector cell after 40 hours normal use.

LIFE EXPECTANCY:

S IZE :

I0 years normal use

Main housing: 3 i/2" x 3" x 6 1/2".

probe and pistol grip.

Does not include

WE IGHT: 2 ibs. 6 oz. (instrument only)

4 Ibs. I0 oz. (complete with battery)

PORTAB IL ITY: Designed to be carried by hand

TIME ON MARKET: 5 years

PRICE:

DELIVERY TIME :

Model 282:

Model 310:

21 days

$695.00 list, complete with accessories.

$745.00 list, complete with accessories.

REMARKS: Designed to detect leakage from buried natural gas
distribution lines without need to sink "bar holes".

Also useful for hydrogen leak testing applications

where extreme sensitivity required.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

MAINTENANCE :

LIFE EXPECTANCY:

PORTABILITY:

PRICE :

DELIVERY TIME :

Bacharach Instrument Division of American Bosch

Arma Corporation

Chemical Indicator-Reagent

Oxygen

#10-5054; #10-5011: #10-5046 Fyrite Gas Analyzers

0-7.6%; 0-21%; 0-60%

Visual - liquid in a column

Ambient temperature from -30 ° to 150°F. Gases up

to 850°F may be tested.

Change fluid after approximately I00 samplings

See maintenance

Yes

$61.00

2 weeks
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.MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Bacharach Instrument Division of American Bosch

Arma Corporation

Thermal Conductivity

Model SA65A Gas Leak Detector (Code 23-7027)

Range selector incorporates XI, X2, X4, XIO_ X20

and XI00 positions.

6.8 x 10 -5 std. cc/sec. Helium.

6.3 volt rechargeable sealed lead acid battery rated

at 2.6 ampere-hours.

Audible (earphone) and visual (meter).

Meter is 0-50 microamp.

± 25%

i to 2 seconds

Satisfactory performance in ambient range of 0 to 140°F.

Not affected by humidity. Non-nutrient materials used.

MIL-I-26600 RFI tested.

Yesj operator's check list provided

Battery recharge required after 8-9 hours continuous

operation.

Estimate I0 yearsj depending on duty cycle.

3 1/4" x 9 1/4" x 9 3/4"

8 1/2 Ibs. including battery and charger

Can be hand carried

2 years

$750 llst

21 days after receipt of order

The SA65A Leak Detector has been tested and approved

Intrinsically Safe by Factory Mutual for use in Class I,

Division i_ Group A, B_ C 3 and D hazardous atmospheres.

FM Report available on request.
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OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IV ITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATAB ILITY:
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ENVIRONMENT EFFECTS :
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LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

Bacharach Instrument Division of American Bosch

Arma Corporation

Thermal Conductivity

Model SA63 Gas Leak Detector (Code 23-7001)

In terms of R-12 gas: 1/2, I, 2, 5 and I0 oz./yr.

4.4 x 10-5 std. cc/sec., Hydrogen

Six size D dry cells

Signal light and tone

± 25%

3 seconds

Satisfactory performance in ambient range of 32 ° to ll0°F.

Not affected by humidity.

Yes, operator's check list provided

Batteries require replacement after 40 hours continuous

service. Use alkaline maganese type.

5-10 years, depending on duty cycle

3 1/4" x 7 3/4" x 9 3/4"

7 1/2 lbs. with batteries

Can be hand carried

4 years

$250 list

21 days after receipt of order
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OPERATLNGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

SENSITIVITY:

EXC!TATION:

OUTPUTSIGNAL
IMPEDANCE:
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ENVIRONMENTEFFECTS:

DOESIT FAlL SAFE:

MAINTENANCE:

SIZE:

WEIGHT:

PORTABIL ITY:

PRICE:

DELIVERYTIME:

Bacharach Instrument Division of American Bosch
ArmaCorporation

Tracer - Halogen (TRH)

RII_ RI2_ R22 and similar refrigerants

"Leakator" (Bach Code#23-7023)

1/2 ounce per year of RI2

2 size D batteries

Visual - light goes out when leak is detected

I second

Operates: O-120°F; not affected by high humidity
Stored: 0-140°F

Yes

Replace batteries periodically (30 hours life)

4 1/2" x 2" x 7 1/2"

1 1/2 Ibs.

Yes

$97.50

Stock

--i-
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

ENVIRONMENT EFFECTS:

MAINTENANCE:

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

REMARKS:

Bacharach Instrument Division of American Bosch

Arma Corporation

Electrochemical Cell

Oxygen

Model K Oxygen Indicator

0-5% and 0-25% oxygen (#23-7049)

None required. Unit is a self generating electrolytic
cell.

Visual - indicating panel instrument

Under normal operating conditions, the instrument is

not affected by position, temperature and altitude.

Reactivate cell at six month intervals

3" x 4 3/8" x 5 3/4"

2.5 Ibs.

Yes

$295

Gas sample is drawn into the instrument with an aspirator

bulb. Sample passes through a teflon membrane permeable

to oxygen and into an electrolytic cell.

Also available in range 0-25% oxygen (#23-7047) $195j and

0-25% and 0-100% oxygen (#23-7048) $225.

30-28



MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSE TIME:

SIZE:

PORTABILITY:

REMARKS :

Beckman Instruments, Inc. (Process Instruments Division)

Infrared

Nitrous oxide (N20)

#15A

i00 ppm N20 full scale

1.0 cu. in./hr. (6 x 10 .5 std. cc/sec.) with 10% N20 in

system being checked. For systems containing 100% N20 ,

leaks of 0. i cu. in./hr. (6 x 10 -6 std. cc/sec.) may be

detected.

l15v, 600w either 50 or 60 Hz models

Visual on indicating instrument and changing

frequency (audio) at earphones.

3 seconds from time probe draws in sample to initial

meter response.

38 1/2" x 37" x 35"

Mounted on four 12 inch pneumatic tires. Fitted with

probe and 50 ft. cables.

If system to be leak checked normally carries a gas that has

good infrared absorption, the leak detector may be sensitized

to that gas, and it is not necessary to evacuate the system.

In this case, the leak detector can be used during actual

working conditions.
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MAI_JFACT_JRER:

OPERATING PRINCIPLE :

SPE CIPIC ITY:

MODEL NO. &

TRADENAME:

RANGE S:

SENSITIVITY:

EXCITATION:

OL_PUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

Beckman Instruments, Inc. (Process Instruments Division)

Infrared Absorption

Sensitized at time of manufacture for nitrous oxide

(N20) , unless another gas is specified.

W 138220 Mobile Infrared N20 Leak Detector

i00 ppm N20 full scale

1.0 cu. in./hr. (4.5 x 10 -3 std. cc/sec.) with 10%

N^0 in system being checked or 0. I cu. in./hr.

(_.5 x 10-4 std. cc/sec, with systems containing I00_ N20.

ll5v_ 600w either 50 or 60 P_ models

Visual or indicating instrument and charging frequency

(audio) at earphones.

±0.5% full scale

Three seconds from time probe draws in sample to

initial meter response.

ll5v, ±lbv, 60 ±0.5 Hz, -20 to 120°F

No

Check zero and span daily; no specific servicing interval.

Indefinite with normal maintenance

38 1/2" x 37" x 35"

200 Ibs.

Mounted on four 12 inch pneumatic tires;

fitted with probe and 50 ft. cables

I0 years

$5400

90-120 days

The model 315A NDIR analyzer, used as the detector,

features all solid state electronics. If system to

be leak checked normally carries a gas that has good

infrared absorption, the leak detector may be

sensitized to that gas and it is not necessary to

evacuate the system. In this case, the leak detector

can be used during actual working conditions.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME

RANGES:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

SIZE:

WEIGHT:

PORTABIL ITY:

PRICE:

REMARKS:

BeckmanInstruments_ Incorperated

Thermal conductivity

Model TBA-2100"Therma Bridge" Analyzer

0-i00 divisions on a 4" long scale

llSv_ 60 Hz, 35w

Panel Instrument

±1%of full scale

30 secondsor less at 1SCFH for 90%of change

8" x 13 1/2" x 12 i/2"

17 ibs.

Yes

$350

Some available accessories - A O-iOmv dc output for

continuous recording of all analyses. Alarm contact

(meter operated) to provide warning of high or low

concentrations of the gas of interest.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

SIZE :

REMARKS :

Beckman Instruments, Incorporated

Ultraviolet Absorption

Detects gases which absorb energy in the 400 m_ region.

Model 255 (Ultraviolet Filter Photometer)

From ppm to 100% concentration, dependent on

application.

Accuracy ±1% full scale

llbv, ±lbv, 60 Hz, or llbv, ±15v, 50 Hz

Choice of: Current - 0 to 5ma, 500 ohms maximum

Voltage - adjustable to any potentiometric

recorder (spans of I through 100my)

±1% of reading

Electronic - 0.5 sec. for 90% of full scale

Sample flushing - dependent on volume of cell

Ambient temperature range: 30°F to 120°F

Analyzer: 29" x 8" x 9 5/8";

Amplifier: 8 3/4" x 8 3/16" x 18 9/16"
Transformer: 9" x 12" x 4 1/4"

Maximum zero drift: 1% of span in 8 hours

Maximum span drift: ±1% of full scale in 24 hours
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

SIZE :

WEIGHT:

PORTABILITY:

PRICE:

REMARKS:

The Bendix Corporation (Scientific Instruments Divison)

Mass Spectrometer

Mass range I to 500 AMU

Model MA-I

i PPM; 10 "13 torr for N2; I00 amps/torr; 10 "12 gram

l15v - 60 Hz - 15 amp circuit

Simultaneous 4 mode scope and recorder readout

The ion source may be operated from normal ambient to 300°C.

The analyzer_ including the magnetic electron multiplier is
bakeable to 300°C.

Yes

Table top cabinet - 19" x 18" x 26"

Analyzer console - 27" x 27" x 35"

Table top cabinet - I00 Ibs.

Analyzer console - 150 ibs.

Analyzer console is on casters.

As residual gas analyzer - approximately $8000

The analyzer tube with or without its pumping system can

be remote_ up to I00 feet from the control console.

-
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

ENVIRONMENT Effects :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE !GHT:

PORTAB IL iTY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Bernz-O-Matic Corporation

Halide Torch - Flame Color

Non combustible refrigerant gas or vapor (R-II,R-12,
R-22,R-II3,R-II4 and carrine).

Tx-12M Leak Detector Unit

Propane flame

Color change in flame

Operator ability to detect flame color change.

Performs from -20°F to + 130°F

No

Replacement of disposable propane cylinder every 10-15
hours of use.

Indefinite (except for changing cylinder)

Shipping size i0" x 6" x 3"

4 Ibs.

Designed as completely portable, self-contained unit

i0 years

$15.70 retail with cylinder

From stock

Color of propane flame in contact with reactor plate

turns from pale blue to yellow in presence of a

halide gas.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVITY:
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OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :
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LIFE EXPECTANCY:
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WE IGHT :

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Burnett Electronics Lab_ Inc.

Sonic-Ultrasonic Range

Air

Burnett Model 609 Ultrasonic Listener

Variable uncalibrated gain control

A 0.001" diameter hole can be detected in a system

pressurized to 2 psi_ at a distance of one foot.

Batteries 1.5 volt.

Audio signal and indicating meter

Speed of sound

Replace batteries 400 to 500 hours of use

5 years

Approximately 8" x i0" x 3"

ii ibs.

Yes

2 Years

$295.00

Shelf item

Has speaker mounted in amplifier or can be used with

special headset to screen out background noise. Probe

is directional and hand held.
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MODEL NO. &

TRADENAME :
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PRICE:

DELIVERY TIME:

REMARKS:

Canal Industrial Corporation

!on Gauge

Freon, Helium

Model 100B Photometric Leak Detector and

Vacuum Gauge.

Uncalibrated (responds i std. cc/sec, to 3 x 10 -8 std. cc/sec.)

3 x 10 -8 std. cc.sec, at 10-5 mm Hg; i x 10-7 std. cc/sec, at

10P •

l10-120v ac, 50-60 Hz.

Visual reading on indicating instrument

Sensitive to vacuum level, otherwise within 10%.

Less than 15 seconds after gas enters chamber.

Voltage range: ii0-125v, 50-60,%-, - no effects under

normal temperature and humidity.

Yes

Photocell window requires cleaning. Frequency depends

on vacuum.

Indefinite

8 1/2" x 7" x 14"

15 Ibs.

Can be hand carried

3 years

$1240

Stock item.

Photodetector senses color or brightness of ionized

tracer gas.
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PORTAB IL ITY:

PRICE :

DELIVERY TIME :

REMARKS :

Cargille Scientific_ Inc.

Bubhle-(Liquid Applicant)

Sho-Gas

0.25 std cc/hr

Determined by use

Varies (quart plastic bottle to 5 gallon can)

Depends on container purchased.

Can be hand carried

From $2.60 to $25.00 depending on amount purchased.

($2.60/quart-5 gallon container at $5.00/gallon)

Stock

Conforms to MIL-L-25567A (ASG) except 4.5.6 skin

toxicity is not known.

--io
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REMARKS :

Century Geophysical Corporation

Century Electronics & Instruments Division

Flame Ionization

Methane

Detector cell manufactured by Perkin-Elmer (213B),

modified by Century.

XI, X3, XIO, X30, XIO0, X300, XIO00, X3000

I ppm

1-300 v battery, 4-6 v lantern batteries, 1-115 v

60 cycle inverter powered from 12 v truck battery.

200 ohms: Indicating instrument and audible signal.

i % of full/scale

4 sec. from sample intake to indication on pen recorder.

Range cell temperature is thermostatically controlled.

Inverter frequency must be ± 0 cps ± 3 cps.

No

Calibrate. Check zero and span daily. Check

compressor and blowers weekly.

With proper maintenance - indefinite.

Console size 35" wide X 24" deep X 30-1/4" high

Approx. 125 Ibs. - console only

Mounted in 3/4 ton "personnel carrier" type truck.

i year

$ii,000.00

6 months

Air tank, hydrogen tank and calibration gas tank

mounted externally to the console.

This firm features leak detection service.
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Consolidated Electrodynamics Corporation

(Subsidiary of Bell and Howell)

Mass Spectrometer - Quadrupole

Yes_ all gases, mass/to 300

Type 21-440

1 to 300 AMTJ3 continuous

I0 amps per tort for N2 -14

Minimum detectable partial pressure is 5 X I0 torr N 2

l15v, 60 Hz_ 15 amperes

lOv dc into oscilloscope or high impedance recorder (50K ohms)

3% of reading_ short range; 10% long range

30 milliseconds to 30 minutes per scan as desired.

Tube bakeable 400°C operable to 200°C.

Electronics for 70 R.H. and ll0°F operation (ambient)

10-15 years

Tube 24" long 4" diameter
Electronics 21" W. X 12" H. X 18" D.

125 Lbs. total

Yes

May 1968

$5300 - with oscilloscope is $6200.

4 weeks

--_o
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Consolidated Electrodynamics Corporation

(Subsidiary of Bell and Howell)

Pressure change (gas) (force balance system)

Force Balance Pressure Transducer, Type 4-333-0001

Servo Amplifier, Type 1-156-0001

1.5 to _ 500 psi% other units to 0-i0,000 psid

0.001% full scale

105 to 125v, 60 to 400 Hz, 35 watts maximum.

+ i0 volts full scale

0.05% full scale

0.I second for 99% full scale pressure step.

Operating ambient temperature range: Transducer; 40°F to

165°F, Servo Amplifier; 32°F to 120°F - 0.025% full scale

shift per degree F change. Humidity; meets MIL-E-5272B,
Procedure i.

Type 4-333-0001: 4" X 3" X 2 1/2"

Type 156:4 1/2" W X 9 3/16" D X 5 1/8" H

Type 4-333-0001:2.6 Lbs.

Type 156:6.5 Lbs.

Yes

Since 1960

Pressure Transducer: $995

Servo Amplifier: $1950

30 days

Must supply your own analog output voltage indicator.
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Consolidated Electrodynamics Corporation

(Subsidiary of Bell & Howell)

Pressure change (gas) (dlaphragm/variable capacitor)

Type 23-105 - Micromanometer

-3
I to 150 X I0 torr Absolute

-3
0.I X I0 tort

l15v 3 60 Hzj 30 watts

Capacitance bridge balanced by driving diaphragm

back to null by electrostatic force and reading

voltage on the duodial control.

+ 0.5 X 10 -3 torr

Ambient temperature range: 20 to 40°C

Contract maintenance service is available

20 years

Gage: 6" X 6" X 3 1/2" - Bridge/Amplifier: 4" X 2" X 4 1/2"

Control unit: 19 1/2" X 8 1/2" X 7 1/2"

40 Lbs. total

Yes

20 years

$2600

4 weeks

System volume on sampling side is 50 cc.
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Consolidated Electrodynamics Corporation

(Subsidiary of Bell & Howell)

Mass Spectrometer (less vacuum system) -

Cycloidal Residual Gas Analyzer

Yes: mass range 2 to 200

Type 21-614

m/e 2 to ii and m/e 12 to 200

Partial pressure of N2 of 5 x 10-12 torr

l15v_ 60 Hz_ 3 amps

Panel Meter and 0-I0 mv dc output signal for

high impedance recorder (50K ohms)

1% of reading

7 min. per octave to i0 sec. per octave as desired.

Electronics: up to 70% R.H. and llO°F (ambient)

Tube bakeable to 250oc

Contract maintenance service available.

I0 to 15 years

Control unit: 21" x 18" x 21 3/4"

Analyzer: 17" x 17" x 12 1/2"

Control unit:

Movable

6 years

$7700

4 weeks

Cycloid tube and envelope are bakeable to 250°C.

150 ibs. - Analyzer Assembly: 90 ibs.
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Consolidated Electrodynamics Corp.

(Subsidiary of Bell & Howell)

Mass Spectrometer (Helium Leak Detector)

Helium; standard modifications available for Argon,
Neon Hydrogen.

Type 24-120B

9 ranges (Xl to Xl0000 range multiplier switch," i0
positions)

5 X i0 "II arm cc/s - He

105 to 125v, 60 Hz, 800 watts (50 Hz available)

Linear output, 0-I00 meter scale divisions

+ 5?.

Less than 1 sec. required to produce 50% full scale
deflection on XI scale.

Tamp: +40°F to ll0°F (ambient)

Humidity: up to 95%

Yes

6 months - clean manifold and change oil

At least i0 years.

30" wide X 20" deep X 22" high

200 Lbs. (shipping weight 275 Lbs.)

4 carrying handles on unit. May be mounted on an

accessory mobile workstand for mobility.

24-120 series - 9 years.

$3,700

Stock item

l.

2.

1

Remote Control Unit is included with basic instrument.

Several standard accessory Seml-automatlc Test Port

Stations are available for use with basic instrument. -:-
Other accessories available are:

Spray Probe Audio Alarm

Standard Leaks Bell Jars & Plate

Sniffer Probes 2 & 3 Valve Inlet Manifold

Port Adapters Mechanical pumps

Auxiliary Cold Trap
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Consolidated Electrodynamics Corporation

(Subsidiary of Bell & Howell)

Mass Spectrometer - (less vacuum system)

Gas Analyzer

Yes - mass range 2 to i00 AMU

Type 21-615

Residual

Mass range 2 to i00

N 2 partial pressure to 2 x 10 "12 torr/division

105 125v, 60 Hz, 2 amperes

Panel Meter and output to high impedance

recorder (50,000 ohms).

3% short term; 5% long term.

Scan rate is 60 seconds per octave.

Electronics up to 70% R.H. and ll0°F (ambient)

Analyzer - bakeable to 400°C.

Contract maintenance service available

I0 to 15 years

Control unit: 12" x 22" x 16"

Analyzer: 15" x II" x ii"

Control unit: 50 Ibs. - Analyzer: 40 Ibs.

Easily moved

2 1/2 years

$3500

2 weeks

Cycloid tube and envelope are bakeable to 450°C.
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Datametrics inc.

Pressure Change (Gas or Liquid)

Electrically nonconducting gases and liquids

Type 1014 Electronic Manometer - "BAROCEL"

Basic ranges are from 0-I torr to 0-i00 psi differential,

each with a 9 position pressure range selector switch

which scales sensitivity from x I to x 0.0001.

-5
i x i0 torr_ maximum

115 volts; 50 to 400 Hz; 60 watts

±5 volts at full scale on 7 ranges (±i0 volts on special

models)

To 3 milliseconds at 760 torr

Sensor type 511 0 to 150°F

Electronic manometer type 1014 - 0 - llO°F

Type 1014:8 3/8" x 14" x 9 1/2" (Electronic Manometer)

Type 511:3 1/4" x 3" x 3 3/4" (Pressure Sensor)

Shipping weight is approximately 25 Ibs.

Yes - Hand Carry

Type 1014 - $1050 (Electronic Manometer)

Type 511 - $890 (Pressure Cell for use with the 1014)

Provided with 9 position range selector switch from

x .0001 to x 1 of full range.

The type 521 pressure sensor with all hermetic seals can

also be used with the 1014.

The type 531 pressure sensor with bake out temperatures
o

up to 300 C can also be used with the 1014.

Pressure transducers for liquid systems require vacuum

back-filllng with the appropriate system liquid after

connecting the pressure transducer into the system.

Pressure differences measured between the pressurized

test system and a static reservoir indicate the

existance of leaks.
--_o
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Datametrics Inc •

Pressure Change (Gas or Liquid)

Electrically nonconducting gases and liquids

Type 1018 - Electronic system for type #511 "BAROCEL"

pressure sensor

0-i0_ 0-i00_ 0-i000 torr and 0-I_ 0-I0 psi - Full range -
varies with model.

0.01% full scale

115 volts; 50 to 75 Hz

Digital Panel Indicator - Also analog output: 0 to ±lOv

dc Source impedance 50Q

Type 511 - pressure transducer - 0 to 150°F

Type 1018 - Electronics system - 40 to ll0°F

Type 1018:8 3/8" x 14" x 9 1/2" - Electronic System

Type 511: 3 1/4" x 3" x 3 3/4" - Pressure Sensor

Shipping weight approximately 25 Ibs.

Yes - Hand Carry

Type 1018 - $2050

Type 511 - $890; Type 521 - $1200

Can be used with pressure sensor types 511 or 521.

Panel is provided with a 4 position range switch xl_

xO.l_ x 0.01, x 0.001.

Pressure trandsucers for liquid systems require vacuum

back-filling with system liquid after connecting the

pressure transducer into the system. Pressure differences

measured between the pressurized test system and a static

reservoir_ indicate the existance of leaks.
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Davis Emergency Equipment Co., Inc. (Instrument Division)

Catalytic Combustion

Combustible gases and vapors.

D-6 Vapotester #11-660

2 scale instrument 0-100% LEL of Hexane in air_
0-10% LEL

Battery operated (8 size D cells)

Reading on panel indicating instrument

Must not be used on pure oxygen

No

Replacement of batteries and/or filaments when

necessary

Slightly over 4 ibs.

Portable unit

$15_

i - 2 weeks

Unit calibrated on Hexane. Many different calibration

curves are available for interpreting readings of various
combustibles in terms of PPM. Accessories available

include: various type probe assemblies_ sample dryerj

liquid trapj cotton filters 2 fixed and variable dilution

valves 3 calibration kit 3 etc.

Spare filaments placed in case compartment.
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Davis Emergency Equipment Co., Inc. (Instrument Division)

Catalytic Combustion

Combustible gases or vapors

D-2 Vapotester #11-410

One - 0-100% of LEL of Hexane in air

Zero adjuster simultaneously sets operating voltage.

Battery operated (8 size d cells)

Reading on panel indicating instrument

Must not be used on pure oxygen

No

Replacement of batteries and/or filament when necessary.

Slightly over 4 Ibs.

Portable unit

$i00

1 - 2 weeks

Unit is calibrated on Hexane. Is single filament,

single control unit designed for general use. One

control knob permits adjustment of meter pointer to

zero and simultaneously sets fixed operating voltage

across the bridge.

Spare filament mounted on filament block.

Accessories available include: various type probe assemblies;

sample dryer, liquid trap, cotton filters, fixed and variable

dilution valves, calibration kit, etc.

Model #11-470 can be calibrated for customer's specific gas:
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Davis Emergency Equipment Co._ Inc. (instrument Division)

Catalytic Combustion

Combustible gas or vapors

D-I Vapotester #11-325

One_ 0-100% LEL of Hexane in air

Separate zero and operating voltage adjustments.

Battery operated (8 size D cells)

Reading on panel indicating instrument

Must not be used on pure oxygen

No

Replacement of batteries and/or filaments when

necessary.

Slightly over 4 ibs.

Portable unit

$105

i to 2 weeks

Model #11-326 is calibrated on natural gas.

Model #11-327 is calibrated on customer's specified gas.

Model #11-325 is calibrated on Hexane.

One active and one reference filament are connected in

bridge circuit. Zero stability maintained even as the

battery voltage decreases.

Bridge voltage can be periodically checked and adjusted

during long tests_ without disturbing instrument zero.

Spare filaments in carrying case.

Accessories available include: various type probe

assemblies_ sample dryer 3 liquid trap_ cotton filters_
fixed and variable dilution valves_ calibration kit_ etc.
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Davis Emergency Equipment Co., Inc. (Instrument Division)

Catalytic Combustion and Thermal Conductivity
(dual cell instrument)

Combustible gases and vapors

D-5 Gastester #ii-575

Catalytic - 0 to LEL natural gas

Thermal conductivity - 0-100% gas concentration -

natural gas

Battery operated (8 size D cells)

Reading on panel indicating instrument

Must not be used on pure oxygen - combustible mixtures.

No

Replacement of batteries and/or filaments when necessary.

Slightly over 4 ibs.

Portable unit

$157

2-4 weeks

Unit is calibrated on natural gas. Scales calibrated

on other true gases can be supplied on request. O-LEL

scale uses catalytic filaments. 0-100% gas scale

operates on thermal conductivity principle. Flashback

arrester is built into filament block. Approved by

Factory Mutual Laboratories. Unit used for detection

and measurement of a true gas in air. Accessories

available include: various type probe assemblies_ sample

dryer_ liquid trap_ cotton filters_ fixed and variable

dilution valves. Calibration kit_ special calibrations

on true gases. Spare filaments in case.
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Davis Emergency Equipment Co. 3 Inc. (Inst_ament Division)

Flame Ionization

Hydrocarbons in air

#11-654

Six range factors: 13 103 25_ I00, 250_ i000

Typical full scale maximum sensitivities are: 5 ppm

Benzene in air; 20 ppm methane in air; 25 ppm propane in

air_ 35 ppm Halocarbon Refrigerant 12

ll5v_ 50/60 Hz

Reading on panel indicating instrument 25my dc for
external recorder.

2% of full scale

Varies directly with sample flow rate. 2-3 secondsj

exclusive of external sample transport.

Sample requirement: sample in air or with a minimum of 18%.

02 (for exceptions_ contact factory)

No

Lecture fuel bottle must be replaced when necessary

15" x 16" x 9 3/4"

30 Ibs.

Portable unit

$1445 --- $1700 with audible alarm

2 - 4 weeks

Output signal is function of specific hydrocarbon being
detected and rate of combustion of the hydrogen fuel

mixture. Hydrogen flame ionizes hydrocarbon molecules_

Sample flow is obtained by internal diaphragm type pump.

Sample is drawn directly through the analyzing cell. Has

rotameter with needle valve to set sample flow rate through

cell. Positive sample pressures of up to 3000 psig can be_-

measured by means of optional pressure regulator accessories.

Audible alarm is optional. Contains integral flame

arrestors for added safety.
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Davis Emergency Equipment Co., Inc. (Instrument Division)

Halide Torch - Flame Color

(Electric Arc Halide detector)

(Blue lines of copper spectrum in electric arc produced in

presence of a halide vapor phototube detects intensity).

Halogenated hydrocarbons

#11-9000

One 0-50 microamps, converted to 500 ppm using
calibration chart.

I0 ppm

ll0v, 60 Hz

Reading on panel indicating instrument

10% full scale accuracy

15" X 16" X 9 3/4"

35 Ibs.

Portable unit

$715

2 = 6 weeks

Halide vapor comes in to contact with the hot tip of a

copper electrode and reacts to form a copper halide, which
vaporizes at the temperature of the electrode and is

carried into an electric arc between two electrodes. The

intensity of the blue lines of the copper spectrum produced

in the electric arc is continuously measured with a photo-

electric photometer using a blue sensitive phototube fitted

with a blue glass color filter. The intensity of the blue

spectrumls in proportion to concentration of halide vapor

present. This is converted to reading on indicating instru-

ment. Sample is pumped through a flow indicator, into an

arc chamber where analysis is accomplished. It is then dis-

charged through a vent at the top of the chamber.

30-52



MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB lL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS:

Dawe Instruments_ Ltd.

Sonic - Ultrasonic Range

1873A Ultrasonic Leak Detector

Indication only

Leaks down to 0.002" dia. at 2 psi can be detected

Battery 7.5v

Meter indication and headphones

Limited by meter response to approximately 0.2 sec.

0°F _ 140°F

No

Check batteries - internal meter and replace as necessary

(150 hours use)

i0 years

2" dia. - 13 1/2" long

2 ibs. (I kg) approximately

Very portable unit is shaped like a large round flashlight

1 1/2 years

120 (Approximately $265)

3 weeks

Unit is supplied complete in carrying case with contact

probe - for checking leaky valvesj etc.3 and extension lead.

The flat carrying case can be strapped to the chest and the

microphone used on the extension lead. This is particularly

convenient when large and complex systems are being checked.
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The Decker Corporation

Pressure change - gas

None

LT-101 and LT-102

Full range 0. i inches of water differential3 others
available

Leaks down to i x 10 -4 std. cc/sec, can be detected

with I0 sec. test time.

llSv, 60 Hz

Panel Meter. Relay and 5v dc high impedance

2% Full Scale

i sec. to i0 sec.

At excitation of 105 to 125v and 60°F to 80°F_ performs

within stated repeatability.

No

Check zero and span daily if required. No specific

servicing interval.

I0 years

25" x 22" wide x 19" deep

40 to 80 pounds depending on manifolding

Can be set on wheeled cart

2 years

$3,600 to $6_000

6 to 12 weeks

Variations available to conform to customer's

requirements.

LT-IOI and 102 are fully automated production Leak

Detectors 3 with electrically sequenced operation.

Adjustable high and low limits give out-of tolerance

relay signals and red light reject signal.

Optional accessories: recorder 3 counter_ alarm buzzer_
calibration samples_ etc.
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Devco Engineering, Incorporated

Thermal Conductivity

#MHA 40

Single or multiple available

Under proper design conditions and operating temperature,

sensitivity of I ppm or lower can be achieved.

llSv, 60 Hm

±2% of full scale for most applications

Detection within approximately I0 seconds. Deflection

of 90% of final reading within approximately 30 seconds.

Presence of more than 2 _ases can affect accuracy.

No

Is not portable - installed at site.

Units are usually designed for required sensitivity to

detect percentage concentration of bi-gaseous mixtures.

Highest sensitivity is obtained when the 2 constituent

gases vary greatly in thermal conductivity.

Various dc readout instrumentation available.

Units are basically monitoring units for either gases

or vapors.
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Devco Engineering, Inc.

Thermal Conductivity

Selectivity to specific gases can be achieved with

suitable filters.

MHA-90

Typical 20 PPM H2S , others available.

llSv ac, 60 Hz

Meter, recorder

0.5% full scale

90% in 5 sec.

Yes

Check span every 60 days

Contingent on maintenance.

Depends on design

No

15 years

$1200 to $5000

60 days
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Devco Engineering, Incorporated

Tracer - Halogen

Halogen gas

#FB23-A

One

0.02 oz./yr. Arcton (dichlorodifluoromethane)

115 or 230v, 60 Hz

Flashing lamp

Almost instantaneous

Test area should be free of halogen contamination.
Exposure to high concentrations of halogen gases
tends to desensitize sensing element.

No

Whenevernecessary - no specific servicing interval

Determined by exposure of sensing element to de-
sensitizing agents.

8" x 3 1/2" x 5"

6 3/4 Ibs.

Canbe hand carried

$345

From stock

Unit must be regarded as "naked flame" and must not
be used in presence of inflammable vapors.
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Devco Engineering, Incorporated

Tracer - Halogen

Halogen gas

#FB24

Two (X5 range switch)

0.02 oz./yr. Arcton (dlchlorodlfluoromethane)

II0/120v3 60 Hz or 200/250v, 60 Hz

Output meter 0-I0 flashing lamp and speaker

Almost instantaneous

Test area should be free of halogen contamination.

Exposure to high concentrations of halogen gases

tends to desensitize sensing element.

No

Whenever necessary - no specific servicing interval

Determined by exposure of sensing element to de-

sensitizing agents.

9 1/2" x 8 1/2" x 7 i/2"

20 ibs.

Can be hand carried

$975

4 - 6 weeks

Unit must be regarded as "naked flame" and must not

be used in presence of inflammable vapors.

Sensing head is connected to the main instrument by

cable, hence providing greater ease in probing for
leaks.
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Dragerwerk-Lubeck (West Germany)

Scott Aviation, Lancaster (U.S. distributor)

Chemical Indicator - Reagent

Reagent type detector tube chosen for specific gas of

interest. Available for detecting about I00 different

vapors and gases.

Scott/Draeger Model 21/31 multi-gas detector

Depends upon gas of interest. For most common gases

several different tubes available_ each with different

range.

Depends upon gas of interest. Some tubes sensitive to

as little as 0.i ppm_ others range to 250 t000 ppm.

Depends upon number of strokes of hand-pump required for

specific tube being used.

Performance not effected by temperature or humidity

changes.

Replacement of rubber parts in pump recommended annually.

Infinitej if rubber parts periodically replaced

Can be held in one hand

Pump alone - 1 lb.

Pump with carrying case - 4 lb. 4 oz.

Furnished with carrying case 6-3/4" long. 5" wide

5-3/4" deep.

More than i0 years

Pump with carrying case $95.00. Tubes vary depending on

type_ average $6.50/pkg. of i0 tubes.

Tubes most commonly used available immediately from stock.

Types less frequently usedj i to 2 weeks.

Unit uses a 1-hand operated bellows type pump to draw

gas through a reagent type detector tub% in which the

reagent changes color if the gas of interest is present

in the specimen. Tubes are marked with a direct reading

scalej the quantitative reading being determined by the

length of the stain.
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Eastern Laboratories_ Inc.

Bubble (Liquid Applicant)

"Bubble-Coat"

Non e

Visual - Bubble (foam) formation at leak

No

8 ounces; 1 gallon; 55 gallon

Up to 500 Ibs.

Yes

8 years

8 oz. size - 70¢ to $I depending on the formulation

Immediate

Some solutions useful to -65°F. Non-toxic_ non-corrosive 3

odorless, non-irritating_ non-flammable and meets MIL-L

25567A spec.
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Edwards High Vacuum_ Inc.

lon Gauge (with palladium window)

Hydrogen

Model LT4A with PL2 detector head

Five

1 x 10-7 torr liter/sec.

100-125 v 50/60 Hz or 200-250v 50/60 Hz.

Visual indication as indicating instrument and also

audible leak indicator.

Detector head- 9 5/16" long x 2 1/4" dia. Control unit

19" wide x I0 1/2" high x approximately 16" deep.

No

5 years

$1145 (for Model LT4A control unit with PL2 detector head)

6-8 weeks.

Highly evacuated hot cathode ionization gauge detector,

in detector head is isolated from the pumping system by

means of a palladium metal barrier which also acts as

the detector anode. During operating the palladium anode

is heated to red heat by electron bomardment, at which

temperature it becomes permeable exclusively to hydrogen.

Hydrogen 3 applied to a lea_ passes through the hot

palladium anode into the detector head where it is ionized_

changing the ion current. This change is amplified by

the control unit (LT4A) and indicated on an indicating

instrument. Indication is compared to indication caused

by calibration of unit using calibrated reference leak.

Control unit has overload relay which switches off detector

head power if ion current becomes excessive.

Hand held leak indicating instrument available as an

accessory.
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Edwards High Vacuum, Inc.

Thermal Conductivity

Vane

Model LT6B with remote hand

Four

1 x 10 -5 tort liter/sec.

100-130v or 200-260v 60 Hz

Visual on panel indicating instrument and audible
leak indicator.

Main unit - 13 3/4" wide x 7 3/8" high x 8 1/2" deep.

Remote hand unit-body length 9 1/2" x approximately

2" diam. with 4 3/4" tube type probe.

Main unit - 16 1/2 ibs.

Remote hand unit 3 1/2 ibs.

Is portable

5 years

$650.00 (for main unit with remote hand unit)

6-8 weeks.

Wide range of search gases can be used, but best results

are obtained with gases whose thermal conductivities

differ most from air, such as hydrogen or helium.

The leak test unit connected to the system under test,

detects leaks covering all pressure states, from vacuum to

positive pressures. System being tested is partially

or totally enclosed by a bag filled with a search gas

or the outside can be sprayed with the search gas,

Use of the remote hand unit, which is connected to the

main unit, enables testing of pressurized vessels or

pipelines. The hand unit has a built-in fan which draws

leaking gas through its probe and into a chamber containing

a heated filament. Cooling effect of leaking gas is

compared as a change of resistance with the cooling effect

of the surrounding atmosphere on another filament.

Resistance difference indicates a leak by instrument

indication and change in loudspeaker tone.
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OVrPL'r SIGNAL

LMFEDANCE :

E._iRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE:

SIZE :

WE !GHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Edwards High Vacuum Inc.

Mass Spectrometer - (180 ° Sector Field)

Gas selection switches makes it suitable for Helium3_

Heliumd, Hydrogen and Argon.

Model 8A

i0 Ranges, 10-2 tort liter/second-maximum

10 -12 torr liter/second, varies with ranges

115 or 220 v, 60 Hz

Both audible and visual (speaker and panel instrument)

Designed for: 50°F to 95°F

No

Check mechanical and diffusion pump oll electrical

checks spelled out in working instructions.

29" wide, 22-3/4 deep, 38" high

320 ibs.

Main unit mounted on 4 casters, readout indicator unit

is hand carry type.

2 years

$4,800.00

stock

Filament is protected both electrically and mechanically

with large LN 2 trap. Fully demountable portable unit
gives operator local control.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Electronic Associates, Inc.

Mass Spectrometer - Quadrupole (RGA)

All gases I -150 amu

QUAD 150

I - 150

1 x 10"15 torr for N 2

115 v, 60 Hz, 6 amp

1 _a to i00 ma/l meg ohm

5_

I00 milliseconds

Detector from 15°K to 250°C

Console from 0°F to 125°F

No

No specific program required

I0 years

Head: 6 diam. by 10" long; Electronics: 19" x 8 3/4"

150 Ibs.

Yes

18 months

$7_950

4 weeks

Special systems available to meet customer requirements_

including integrated vacuum systems_ process control 3 etc.

Quadrupole assembly is bakeable at 400°C.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS•

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Electronic Associates 3 Inc.

MassSpectrometer - Quadrupole (RGA)

All gases 1-500 amu

QUAD250

I- 50; I0 - 150; 50 - 500

1015I x tort for N2

llSv, 60 Hz, 6 amp

I _a to iO0 ma/l megohm

5Z

I00 milliseconds

Detector from 15°K to 250°C
Console from O°F to 125°F

No

No specific program required

i0 years

Head: 6" diam. x I0" long; Electronics: 22 1/2" x 25 1/2_' x S0"

500 Ibs.

Yes

3 years

$13,635

4 weeks

Special systems available to meet customer requirements,
including integrated vacuumsystems, process control, etc.

Quadrupole tube is bakeable to 400°C.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES :

SENS IT IVITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATAB IL!TY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Erdco Engineering Corporation

Catalytic Combustion

Combustible Gases

05HCS - TOX-EX

0-100% LEL, 0-10% LEL

5% full scale

Battery operated 3 2D Cells, 2 #228 cells for audible alarm.

Visual reading plus audible alarm

5Z

Less than 3 seconds with 25' hose.

Temperature Compensated

No

9 Months

5 years

9" x 2 3/4" x 3 1/2"

40 ounces

Hand carried portable

1 1/2 years

$183.50 complete with handle

Stock item.

Detects combustible gas leaks - electrically differentiates

methane from petroleum vapors. Accessories include

sampling hose, calibrator. Can be purchased with Ni-Cad

rechargeable batteries.

Gas sample can be admitted by diffusion or by aspirator
bulb.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABIL ITY:

RESPONSETIME:

DOESIT FAlL SAFE:

MAL_TENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABiL ITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Erdco Engineering Corporation

Catalytic Combustion

Combustible Gases

03HCS- TOX-EX

0-100%LEL

5%LEL

Battery operated - 2 D Cells

Visual reading on indicating instrument

5%

Less than 3 seconds with 25' hose

No

9 Months

5 years

8" x 1 3/4" x 3"

28 ounces

Hand carried portable

2 years

$75.00

Stock item

Detects combustible gas leaks - electrically differentiates

methane from petroleum vapors. Accessories include

sampling hosej dilution valve for reading concentrations

above LEL. Can be purchased with Ni-Cad rechargeable

batteries.

Gas sample can be admitted by diffusion or by aspirator
bulb.
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MANUFACTURE R:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVlTY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME ."

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Erdco Engineering Corporation

Catalytic Combustion

Combustible Gases

06HCS - TOX-EX

0 - 100% LEL

5%

Battery operated - 8D Cells

Visual reading on indicating instrument

5%

Less than 3 seconds with 25' hose.

No

9 months

5 years

6 - 3/4 " x 5 - 7/8" x 3 - 1/4"

4 ibs.

Neck strap portable

3 months

$i10.00

Stock item

Detects combustible gas leaks - electrically differentiates

methane from petroleum vapors. Accessories includeseml-rigia

nylon tube probe and a calibrator. Model 06HCS is fully

illuminated for unlighted areas.

Gas sample can be admitted either by diffusion or by

aspirator bulb.
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M_NLTACT'JRER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

SENSITIVITY :

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Euphonies Industries, Inc.

Sonic - Ultrasonic Range

El-100 Leak Detector

(The Elwood Corporation is the

sole distributor)

A function of pressure, orifice_ and detection distance.

9 volt battery (standard transistor radio type)

Audio, 2000 Ohms (earphones)

Uneffected by the normal variations of humidity and

temperature.

No

None with the exception of battery change.

I0 years

9" long and 1 1/2" diameter.

1 3/4 pounds in the carrying case, 9 ozs. without case.

Hand held instrument

One year

$115.00

From stock

Ultrasonic sound is converted to sonic range and

detector by earphones.

Leaks can be detected at a distance.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

OUTPUTSIGNAL
IMPEDANCE:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

Excelsior Varnish, Inc.

Bubble (Liquid Applicant)

Excelsior Leak Finding Compound

Bubble

Packaged in 55 gal. drums, 30 gal. 1/2 drums, 5 gal. pails

8 1/3 pounds per gallon concentrated

Applicator can be hand carried

26 years

Depends on quantity purchased

Orders shipped in 24 hours

Is diluted with equal amount of water. Covers 1,000 to
1,500 square feet to the gallon after reduction. Will not

clog small holes. Will not freeze or deteriorate in the

package. Will not harden or cake in hot weather. Apply

over welded metal surface then use 3 to 5 pounds of air

pressure to the opposite side for long lasting bubbles that

show up leaks. Quickly rinses off with clear water.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIV!TY:

EXCiTATION:

OUTPUTSIGNAL
LMPEDANCE:

REPEATABILITY:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTAB!L ITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Fisher ResearchLaboratory, Inc.

Sonic - Sonic Range

WM,"Master Electronic Witch"

4 ranges

32db full scale to I00 db full scale.

Battery operated (9v de)

Visual and audio (2000_ earphones)

Good

Input voltage should be within ±10%, temperature
range - -20°C to + 60°C

No

Mainly dependson battery life, approximately 2000 hrs.
of operation.

i0 years

15 1/2" x 9 1/2" x ii 1/2"

20 Ibs.

Canbe hand carried

4 years (transistorized model)

$395 F.O.B. Palo Alto

Stock item

Vibrations in frequency range of 40 to I0,000 cycles
are detected and amplified.

This unit is a leak detector and pipe finder combination.

Chiefly used for locating pipe leaks principally in oil

and water systems.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGE S :

SENS ITIV ITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Fisher Research Laboratory

Sonic - Sonic and Ultrasonic range

LT-10

30 Hz to i0 kHz. Tunable filter zero - in

desired frequency

Low position 32 db, mid position 55db, hi position 85 d5

9 volts dc internal battery

Audio signalj panel meter

Speed of sound

Temperature -20°C to +60°C. Input voltage ±15%.

No

Battery replacement, approximately 300 hrs. of operation

Under normal instrument care 5 yrs

ii" x 7.12" x 3.25"

Operating weight - complete 4.5 Ibs.

Sturdy leatherette carrying case with compartment for
accessories.

Transistorized model 6 yrs. Tube model over 30 yrs.

$199.50

In stock

High gain audio amplifier with sonic transducer as pick-up

probe.

Detecting vibration of escaping liquid through an irregular
orifice.

Designed primarily for locating fluid leaks in water and oil

systems. Exclusive tunable filter circuit to pinpoint exact

leak frequency, eliminating other noise sources. Also broad

position for preliminary detection. Very good portability

and compactness.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE•

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Fisher Research Laboratory

Sonic - Sonic and Ultrasonic range

LT-15

30 Hz to i0 kHz-nine frequency filters

Four sensitivity ranges - Xi-32db X2-52db X3-81db X4-110db.

9 volts dc internal battery

Audio signal. Panel meter.

Speed of sound through the ambient

Temperature 20°C to +60°C. Input voltage ±15%.

No

Battery replacement after approximately i000 hrs. of

operation.

Under normal instrument care, 5 years

12" x 8" x 5"

Operating weight 7 ibs.

Sturdy leatherette carrying case with compartment for

accessories.

Transistorized model 7 yrs. Tube models over 30 yrs.

$395 with carrying case and complete accessories

In stock

High gain audio amplifier with sonic transducer as pick-up

probe.

Standard accessories: stainless steel-varlable length

extension rods, ground sound plate, various type attachments

for the crystal pick-up, transducer, headphones, extension _:

cables. Designed primarily for locating leaks in fluids.

Nine position narrow band filter, four sensitivity ranges

and FINE tuning sensitivity control.
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MANUFACTURER:

OPERATING PRINC IPLE :

MODEL NO. &

TRADENAME :

RANGES :

SE NS IT IV ITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Fisher Research Laboratory

Sonic - Ultrasonic range

GT-4

36kHz to 44kHz

Will detect a leak through hole of a .006" of I psi

at distance of 5 ft.

9 v dc internal battery

Audio signal_ optional panel meter

Speed of sound

Normal operation temperature -20°C to +60°C. Input

voltage ±15%.

No

Battery replacement 150 - 200 hrs.

Under normal operating conditions 5 yrs.

6" x 2.5" x 1.25"

12.5 oz.

Pocket size. Can be attached on a belt.

4 years

$149.50

In stock

Detects vibrations of gas pressure or vacuum leaks in

ultrasonic frequencies and converts the same to audio

range.

Sensing probe has conical dire6tivity of 22 °. Can be

used to detect leaks in pressure or vacuum systems

(especially checking pressurized telephone or power lines).

Unit does not respond to ambient noise. Pressure leaks
can be detected from a distance in excess of 50 ft.

Contact probe optional.
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MANUFACTUPFR:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES"

SENSITIV ITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Fisher ResearchLaboratory

Sonic - Ultrasonic range

GT-5

36 kHz to 44 kHz

Will detect a leak through hole of .006" of i psi
at distance of 5.5 ft.

9 volts internal battery dc.

Audio signal (speaker or headphones)_panel meter

Speedof sound

Normal operation temperature -20° to + 60°C.
voltage ±15%.

Input

No

Battery replacement after 750-800 hours of service.

Under normal operating conditions 5 years

9" x 5.5" x 4.75"

5 ibs. including probe and battery.

Can be hand carried.

4 years

$395

In stock

Detects gas pressure or vacuum leaks in ultrasonic

frequencies and converts the same to the audio range.

Sensing probe has conical directivity of 22 °. Can be

used to detect leaks in pressure and vacuum systems

(especially checking pressurized telephone and power

lines). Unit does not respond to ambient noise.

Pressure leaks can be detected from a distance in excess __

of 50 ft. Contact probe optional.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADE"NAME :

RANGES :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Fisher Research Laboratory

S_nic - Sonic range

AS "AUDIO-SCOPE"

Audio ranges of 30 Hz to I0 kHz

80 db_ controlled by the sensitivity knob

9 v dc

Audio signal - headphones

Speed of sound

Normal operation temperature -20°C to +60°C. Input

voltage +15%.

No

Battery replacement after approximately 700 hrs. of

operation.

Under normal instrument care 3 5 years

Length 5" diameter 3"

ii oz.

Pocket size

5 years

$67.50 including headphones and 6" contact rod

In stock

Transistorized amplifier_ self-contained vibration and

leak detector. Detects vibration of escaping fluids.

Ground sound plate-optio.al. Carrying case-optional.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME:

OUTPUT SIGNAL

IMPEDANCE:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Flamort Chemical Company

Bubble (Liquid Applicant)

Detect-A-Leak

Visual (bubbles)

8 oz. can with brush attached to cap.

Carton of 12 - 8 ozs. cans. 9 3/4 Lbs.

Yes

12 years

$12.60 per carton of 12 - 8 oz. cans; I gal. $4.80.

From stock

Can be used safely on rubber, plastic or any type of

metal. It is non-corrosive and non-inflammable.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

ENVIRONMENT EFFECT:

REMARKS :

Flow Technology, Inc.

Flow Sensor

Any gas or liquid

FTL series

Liquid: 0.001 to 0.I gpm
Gas: 4 to 4000 cc/min.

24 v dc (isolated)

Voltage pulses (50 my) i to 500 Hz proportional

to flow rate.

0.1% of full scale.

Normal: -20°F to +165°F

Available: -430°F to +550°F

Unit is a turbine type flowmeter.

30-78



MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO.&
TRADENAME:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Fluid Data Inc.

Sonic-Ultrasonic range

Model UD-100"Leakdata"

Dependson distance between location of leak and
testing point.

4.5 v dc battery

I0 mwin 600 ohmheadphone

Speedof sound

Over normal temperature and humidity - slight range

variation.

No

Batteries have 500 hours life.

Electronics 4" X 8" X 2" - Probe (hand held)

1 1/2" diam. X 6" long.

3 Lbs.

Yes

Year

About $200.00

2 - 3 weeks

Solid state electronics.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL No. &

TRADENAME :

RANGES :

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECT9:

WE IGHT:

The Fredericks Company

Ion Gauge (hot filament)

MODEL 3A-5 "Televac"

10-3 to 2 x 10 -9 torr in 5 ranges

l15v_ 60 Hz

Indicating panel instrument and a "null balance" type
recorder.

Output from 0 to Iv (normally factory set at 10my full scalel;

Power supply is regulated to compensate for llne voltage
variations from 95 to 130v.

Approximately 45 Ibs.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

OUTPUT SIGNAL

L-MPEDANCE:

SIZE:

PORTABILITY:

Galaxle Products

Bubble (Liquid Applicant)

None

I-SPY LEAK DETECTOR

Minus 10°F to +212°F

Visual - bubble formation at the leak

4 oz. and 8 oz. polyethylene squeeze bottles.

plastic container

Yes

i gallon
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIVITY:

EXC ITAT ION :

OUTPUT SIGNAL

IMPEDANCE :

RE PEATA BIL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

S IZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Gas Analysis Systems, Inc.

Thermal Conductivity

High signal response to all co,=nonly used non-corrosive

pressurizing or contaminating gases and vapors.

LC-5

Continuous attenuation (manual control of gain)

i x 10 -5 std. - cc/sec, helium in air

** llbv 60Hz or Type 'C' flashlight batteries

Visual 0-i00 relative signal

Approximately ± 10%

Approximately I second

Ambient temperature_ flow rate and background gas

composition changes can be nulled out instantaneously.

Yes

No specific servicing intervalj (except battery replacement).v

5 years

3 1/2" x 4" x 9" - with 4' sample pick-up hose and probe
@

4 ibs.

Can be hand carried or suspended by neck strap

2 years - (this instrument series introduced 6 years ago).

$165.00

Shelf stocked

This instrument was designed for quickly checking leaks

in pressurized piping or tanks and possible contaminated

areas for toxic or non-toxic concentrations.

Vacuum systems can be checked by temporarily pressurizing

at i psig.

** Interchangeable bases are available.
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MANUFACTURER: GasPurifying Materials Co., Inc. (Instrument & Equipment
Division)

OPERATINGPRINCIPLE: Catalytic Combustion
Thermal Conductivity
Dual Cell Instrument

SPECIFICITY:

MODELNO. &
TRADENAME:

Combustible gases and vapors.
Conductivity.

#GPM"Vaporgraph"

Inert gases by Thermal

RANGES: Catalytic 0-0.1% Natural Gas
Combustion 0-1.0% Natural Gas

0-5.0% Natural Gas

Thermal
Conductivity 0-100%Natural Gas

EXCITATION: Nickel Cadmiumbatteries with built-in charger (ll0v ac)

OUTPUTSIGNAL
IMPEDANCE:

dc mv output proportional to concentration - recorder
available.

REPEATABILITY: -+ 1Z

RESPONSE TIME: I second

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

Compensated for temperature and humidity variations.

No

MA INTE NANCE : Operation check using known standard when necessary.

LIFE EXPECTANCY: Indefinite

SIZE: 3" x 6" x 8"

WE IGHT: 7 pounds with battery

PORTABILITY: Portable unit

TIME ON MARKET: 2 years

PRICE : $360

DELIVERY TIME: 3 - 6 months

REMARKS : Automatic sampling by steady flow diaphragm pump.

Standard Ranges: 0 to 1.0%; 0 to i00% natural gas.

Additional Ranges Available: 0 to 0.1%; 0 to 57_ natural ga_l

Special Ranges available to suit application.

Options include: Outlets for recorder and alarm and

dc power supply.

* 5% natural gas is LEL.
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MANLTA CT_JRER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY :

EXCITATION :

Ob"I_UT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT :

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Gas Purifying Materials Co., Inc.

Thermal Conductivity and Catalytic Combustion

Gas and vapor detection is positive by separation by gas

chromatography - Air carrier for atmospherics

ANALOGRAPH

For combustible vapors and gases can read from 1 ppm to 100%.

Four filament bridge permits I PPM and upper PPB detection.

I00 - llSv, 60 Hz or battery

Millivolts or microamps - low impedance

_1% of output

1/2 second to several minutes - totals immediate

Temperature compensated by balanced bridge circuit.

Can be installed if requested - hi-lo limits alarm

Indefinite - monthly check suggested

Indefinite

6" x 6" x 8"

I0 pounds without batteries 14 Ibs. with batteries

Portable unit

One year

$1200

4 months

Each unit is constructed to suit the specific requirements

of the purchaser for example modifications can be made to

sense sulfur dioxide, hydrocarbons, gases, etc. Concen-

tration sampling can be installed. Diaphragm pump draws

in sample if necessary. Recorder outlet and power failure

alarm optional.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Gas Purifying Materials Co., Inc.

Equipment Division)

(Instrument &

Catalytic Combustion

Thermal Conductivity

Reagent (colorimetric)

Triple Cell Instrument

Catalytic - combustible gases and vapors

Thermal Conductivity - inert gases

Reagent reactive and low concentrations toxic

components ( Mercaptans Propylene, Co.)

#GPM "Odorgraph"

Catalytic
Combustion

0-0.1% Natural Gas

0-1.0% Natural Gas

0-5%* Natural Gas

Thermal

Conductivity

0 to 100% Natural

Gas

Colorimetric

Reagent Tube

0 - i00 ppm

0.1% full range

Nickel Cadmium batteries with built-in charger (llOv ac).

dc my output for catalytic and thermal conductivity cells.

± 1%

Electrical - i second

Colorimetric - i minute

Compensated for temperature and humidity variation.

No

As needed.

3" x 6" x 8"

7 pounds with battery

Portable unit

6 years

$360

3 - 6 months

Automatic sampling by steady flow diaphragm pump.

Standard Ranges: 0-1.0%; 0-100%; 0-i00 ppm Natural Gas.

Additional Ranges available: 0-0.1% and 0-5%* Natural Gas.

Special Ranges available to suit application.

Options include: dc power supply, recorder outlet and alarm

outlet.

* 5% natural gas is LEL.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME :

REMARKS :

George W. Gates & Company, Incorporated

Chemical Indicator - Fluorescent Dye

GPC Water Soluble Fluorescing Agent -SGA Oil

Soluble TFS4-Bg0 Raymaster

Battery operated 2-45 volt B batteries for "black

light" lamp

Bright glow of fluorescence under rays of

exploring lamp.

Glow can be seen at once.

Darkened area for best results - no changes

Depends on care and usage.

Determined by usage

Battery unit 4 1/4" x 5 1/2" x 8"

Lamp unit 3 1/4" x 6 1/2" x 1 3/4"

Battery unit Ii Ibs. Lamp unit I lb.

Can be hand carried

15 years

$37.00 for "Raymaster" unit - $5.50/Ib. water soluble

fluorescing agent - $13.00/Ib. oil soluble fluorescing

agent.

3 to 4 days

Non-corrosivej non-toxlc-dffferent fluorescing agents

available for customers requirements. Agent is a dry

powder and is diluted in liquid in system to be leak
tested.

GPC agent is for water dilution.

5GA agent is for oil dilution.

Detection equipment is for liquid leaks 3 not gas or

vapor.
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IMPEDANCE :
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TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

General Air Products Corporation

Pressurized (CO2) - frosting of atmospheric moisture

Test-King

Pressure gage, audible signal and visual observation

of frosting of moisture in the area of a leak.

Yes

Tank requires periodic recharge with CO 2

20 to 30 years

25" x 6 3/4"

40 ibs.

Can be hand carried

15 years

$90.00

2 weeks

Test system is connected to regulator of pressurized

CO 2 tank. Tank may be removed for recharging or for
use elsewhere while leaving system being tested under

pressure. Detects leaks by frosting of atmospheric

moisture. Provides an audible leak signal and a

system pressure gage.

Meets all Interstate Commerce Commission regulations.
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MANI/FACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

General Electric Company, Instrument Department

Tracer - Halogen

Halogen Gas

Type H-II Serviceman's Leak Detector

One

0.5 oz./yr. R-12

1,25 v3 7 ampere-hour rechargeable battery

Change in flashing rate of neon probe lamp.

Good - built-in reference leak prov[des check

on accuracy.

Approximately i second

DOES IT FAIL SAFE :

MAINTENANCE :

ENVIRONMENT EFFECTS: (2) 32°F to 136°F (0°C to 58°C) operating range

32°F to 104°F (0°C + 40UC) charging range

must avoid corrosive fumes and salt spray

No

As required - normally only new sensing element need

be replaced.

LIFE EXPECTANCY: Determined by usage

SIZE: Detector 8 1/2" x 4 5/8" x 3 1/2"

Charger 4" x 4" x 2 3/4"

Detector - 3 Ibs. - Charger - 2 ibs.

Can be hand carried

i year

(1) - $130.00

Available from stock - sold through air conditioning

and refrigeration distributors (wholesalers),

REMARKS: (I) Unit furnished as one package, including detector

and charger.

(2) Unit must not be used in presence of flammable vapors.

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:
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OUTPUT SIGNAL
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REMARKS :

General Electric Companyj Instrument Department

Tracer - Halogen

Halogen gas.

Type H-10

Two

High sensitivity range - 0.5 oz./yr. R-12

Low sensitivity range - 1.0 oz./yr. R-12

iI0-127v_ 60 Hzj 15w

Change in flashing rate of neon probe lamp.

Good

Approx. I second

32°F to l13°F (0 to 45°C) operating temperature range.

Must avoid corrosive fumes and salt spray.

No

As required - normally only new sensing element

need be replaced.

Determined by usage.

4 1/2" W x 2 5/8" H x 8 9/16" L

3 ibs.

Can be hand carried.

Approximately 1 1/2 years

$90.00

Above information is for Type H-10 leak detector.

Units must not be used in presence of flammable vapors.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCE:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

REMARKS :

General Electric Companyj Instrument Department

Tracer - Halogen

Halogen gas

Type H-2

I0 ranges covering span from I0 x 10 -5 std. cc/sec, to

3 x 10-9 std. cc/sec full scale.

Maximum 1 x 10 -9 std. cc/sec. (6 x 10 -6 oz./yr.) R-12

120v or 240v, 60 Hz, 100w

Amplified signal read-on control unit indicating

instrument and indicating instrument on detector unit.

Also audible signal.

Good if environmental conditions are kept constant.

Temperature range: 32°F to 131°F (0 to 55°C) - Air

velocity not to exceed 10 mph. No signs of corrosion

after 16 hours, 90_ relative humidity at 40°C. Exposure

to high concentrations of halogen gases tends to desensitie

sensing element.

No

Whenever necessary - no specific servicing interval.

Determined by use and exposure to desensitizing agents

20" W x 14" H x II" D (These are control unit dimensions

used with various detectors.)

Control unit 15 ibs., detector units 1 to 2.51bs.

Can be hand carried

Latest model - approximately 3 years older models -

approximately 15 years.

Control unit $770. Detector unit - $345.

Calibrated leaks, capsules and leak standards are

available for quantitatively calibrating units.

Must not be used in presence of flammable vapors.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

General Electric Company, Instrument Department

Tracer - Halogen

Halogen gas

Model H-5P

I0 ranges covering span from I0 x 10-5 std. cc/sec, to

3 x I0_9 std. cc/sec, full scale.

Maximum i x 10 -9 std. cc/sec.

120v or 240v, 60 Hzj lO0w

Amplified signal read on control unit indicating
instrument. Also audible signal.

Good

i second.

Temperature range: 32°F to 131°F (0 to 55°C). Air

velocity not to exceed I0 mph. No signs of corrosion

after 16 hoursj 90% relative humidity at 40°C. Exposure

to high concentrations of halogen gases tends to de-

sensitize sensing element.

No

Whenever necessary - no specific servicing interval.

Determined by use and exposure to desensitizing agents.

20" W x 14" H x II" D (These are control unit dimensions

used with the various detectors.)

Control unit 15 ibs.

Detector units I to 2.5 ibs.

Can be hand carried.

Latest model - approximately 3 years. Older

models - approximately 15 years.

Control unit - $770. Detector unit - $345.

REMARKS : Calibrated leaks 3 capsules and leak standards are

available for quantitatively calibrating units.

Must not be used in presence of flammable vapors.
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MANUFACTURER:

OPERATINGPRINCIPLE:
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MODELNO.&
TRADENAME:
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TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

General Electric Company,Materials Engineering
Laboratory, Researchand DevelopmentCenter

Particle Detector. Gasesand vapors converted to
particles type CNC(condensation nuclei counter).

Selectivity is possible with the use of specific
chemical converters.

"Condensation Nuclei Counter" Cat. No. I12L428.

Eight

Varies with gas or vapor. Examples: Halocarbon
refrigerants 12-21 = 2 PPM; Sulphur Dioxide - 0.001PPM;

Unsyn_netrical dimethylhydrazine = 0.i PPM.

l15v, 60 Hz, 220 watts. (llSv, 220v, 50 Hz units available)

Panel instrument: Provision for Recorder (1500 ohms)

Outputs: 0-I madc, 0-i0 mv dc, positive above ground.

2 seconds as particle detector, order of 2 to 5 seconds

as gas detector.

Lubricate sleeve valve every 2000 hours, clean detector

chamber and optics as needed. Clean prehumidifier -

period determined by nature of gas to particulate conversion.

i0 years

Cabinet 22" W x I0" H x 20" deep

127 ibs.

6 years

$4800 less conversion units

8 - I0 weeks

I. Typical gases detected:

nitrogen dioxide - ammonia - chlorine

unsymmetrical dimethylhydrazine - phosgene

2. Automatic range changer available with or without

recording devices.

3. Similar detectors have been engineered for shipboard
and aircraft use.

4. Gas converters are not required for materials such as

carbonyls - which produce airborn conversion particles

directly.
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MANUFACTURER:

OPERATINGPRINCIPLE:
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MODEL NO. &

TRADENAME

RANGES :
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OUTPUT SIGNAL

IMPEDANCE:
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TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

General Electric Company - Vacuum Products Business

Section

Mass Spectrometer

Helium

22LC010 & 22LC020 (Includes automatic roughing station)

4-position decade switch to provide ranges of xlj xl03

xl00, xl000.

2x10 "II std cc/sec

(22LC010 - 120vj 7 ampsj single phase 60 Hz (50 Hz units are

(22LC020 - 120v I 15.4 amps_ single " " available)

Panel meter

Less than 1 second

Units will operate within stated specifications over

temperature range 40°F to 120°F, up to 100% RH and

within range of 105 and 125 volts.

Yes

Check sensitivity perlodlcally--occaslonally pump belt

replacementj pump oil changej and cleaning--no specific
service interval.

I0 years

34" H x 25" W x 28" D with 4.8 sq. ft. work surface.

22LC010 is approx. 190 Ibs. 22LC020 is approx. 345 ibs.

Mounted on 4-fully swiveling casters.

3 years

$3,850 to $5,225

i week

Accessories such as standard calibrated leak inlet port

adaptorsj sniffing probej helium jet audible alarm and

base plate and bell jar attachment are available. Also

models are available with mounted I0 cfm 7 15 cfm

mechanical roughing pumps in place of the scfm pump normally

supplied in the 22LC020.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE:
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ENVIRONMENT EFFECTS:
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PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

General Electric Company - Vacuum Products Business

Section

Mass Spectrometer

Any gas or vapor having molecular weight in
range 1-600.

22MS-I00

8 ranges of Keithley picoammeter

Depends on application and probe gas.

115 v, 15 amps, 60 Hz

(bakeout ovens 230 v, 115 amps, 60 Hz)

Meter display on electrometer, fast response

recorder, oscilloscope optional.

tbz

Depends on sensitivity range - as fast as
I millisecond.

Line voltage between 105 and 125 v.

Can be with options.

Quarterly

I0 years

Control console: 84 x 22 x 24

Analyzer console: 72 x 22 x 28

1450 ibs •

Both units mounted on 4 fully swiveling casters.

Since March, 1967

$24,500 + accessories

Stock to 60 days
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MANUFACTURER: General Electric Company- VacuumProducts Business
Section

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

MassSpectrometer

Monopole#600

1 to 600 AMUin a single massrange

Minimumdetectable partial pressure: I x 10"14 tort (N)
or lower, e

I05-125V, 50/60 Hz, 2 amps.

Panel meter calibration in mass number.

Optional readout: Electrometer with recorder and/or

oscilloscope.

Slow scan time: I0 to 40 minutes for 1 to 600 AMU.

Fast scan time: 50 milliseconds to 250 seconds for i to

600 AMU.

22" H x 19 3/4" W x 19" D

Console: 115 Ibs.

Monopole Tube 6 Ibs-

Yes

Marchj 1967

Control Unit - $8000; Analyzer tube - $4000.

Stock to 60 days.
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REMARKS :

General Electric Company - Vacuum Products Business
Section

Ion gauge, trigger gauge 3 ion pump. Accessory (audible

leak detector). Connected to recorder output of ion

pump or pressure gauge control.*

Variety of gases except air.

Model No. 22LCI00

Dependent upon system being tested.

4 millivolt input change produces I00 cycle freq. change.

Two batteries 5.4 volts each

Audible tone

Good

Approximately one second

Probe gas must be able to effect response of detector

previously installed in system.

No

Battery life I00 hrs.

5 years

4 1/2" x 3" x 2"

1 1/2 ibs.

Hand carried

2 years

$35o

I week

For use on vacuum systems only. To be used with

vacuum system pressure gage detectors or ion pump
controls.

*Probe gas penetrates into vacuum system through a leak

and causes a variation in the detector tone.
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REMARKS :

General Monitors, Inc.

Electrochemical Cell

N2OA, Hydrazines , and UDMH depending on model.

Model 150 Toxic Gas Unit

0 to 5 ppm, 0 to 200 ppm

Fuel - 1/4 ppm

Oxidizer - 1/2 ppm

llSv 3 60 Hz

2v into IK ohm load for analog signal. Panel meter

provided.

5% full scale or the above sensitivity value whichever

is larger.

I0 sec. to 90_ reading

35°F to 120°F

Yes

20 days - recharge cells.

6 month warranty

Sensor - NEMA 12 housing

Remote readout - rack mountable 7" panel height

30 ibs.

Semi-portable

1965

$3000 class

60 days

Miniaturization design in process.

Other toxic gases can be handled.

Electrolytic supply requires changing after approximately

3 weeks of service. Changing operation requires 5 mlnutes_t
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REMARKS :

General Monitors, Inc.

Catalytic Combustion

Most flammable gases

Model 175 Combustible Gas Detector

Adjustable for full scales of 20% to 125% LEL

I% of LEL

l15v T 20%, 50/60 Hz, 5w

Iv into ik ohm load - also panel type indicating meter.

1% of full scale

I sec. and up depending on density of gas.

Remote probes - 200°F max&# 100% humidity
Control units 32°F to 120-F.

No

60 to 90 days

One year warranty

3 1/2" x 9 1/2" x I0" panel# rack or wall mount.

3 lb./channel

No

1968

$425

30 days

Low temperature diffusion head probes.

Single alarm system, buzzer alarm, contacts and lamp.
Similar to Model #170.

30-98



MAI_JFACTIIRER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

General Monitors, Inc.

Catalytic Combustion

Most flammable gases

Model 172 Explosion Proof Gas Detector

Adjustable for full scales of 20% to 125% LEL

1% of LEL

l17v T 20% 50/60 Hzj 12v dc, 5w

Iv into ik ohm load - also panel indicating meter.

1% of full scale

i sec. and up depending on density of gas.

Remote probes - 200°F max&, 100% humidity.
Control units 32°F to 120-F.

Yes

60 to 90 days

One year warranty

Approx. 9"x 9"x 8"wall mount or panel mount.

20 ibs.

No

1967

$850 to $900

60 days

Low temperature diffusion head probes.

Dual alarm system.

Similar to #170j but is in explosion-proof case.
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REMARKS :

General Monitors, Inc.

Catalytic Combustion

Most flammable gases

Model 170 Combustible Gas Detector

Adjustable for full scales of 20% to 125% LEL

1% of LEL

llTv _ 20_ 50/60 Hz or 12v dc, 5w

Iv into Ik ohm load for remote analog signal - also

panel meter.

I% of full scale

1 sec. and up depending on density of gas.

Remote probes - 200°F max&, 100_ humidity.
Control units 32°F to 120-F.

Yes

60 to 90 days

One year warranty

4 3/8 x 2 1/8 x 8"/channel (rack mountable)

3 ibs.

Semi-portable

1966

$550

30 days

Low temperature diffusion head probes.

Rugged, shock resistance control units and probes.

Dual alarm system.

Panel mounted readout meter, controls, alarm lamps,

alarm buzzer and switches.
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REMARKS :

General Monitors, Inc.

Catalytic Combustion

Most flammable gases

II00G-IIOOE-IIOOM

0 to 100% LEL

2% of full scale

2 rechargeable D cells - built-in charger.

Built-in compact panel meter audible alarm.

1% of full scale

i sec. and up depending on density of gas

0°F to 120°F

No -- audible alarm on low batteries

60 days. Recharge batteries after 8 hours operation.

I year warranty except batteries

IIOOG - 7.25 x 7.9 x 2.25

II00E - 7.5 x 6.25 x 4

2 ibs.

Yes

1968

See remarks

30 days or stock

Low temperature diffusion head probes.

Remote probes I audible alarm (buzzer)j visual alarms

(lamps) are available.

Available variations of the #II00 series are:

#1100E - $287 - recharge on llbv 3 60 Hz.

#1100G - $375 - Same as #1100E_ but has pistol grip design

flashing alarm light and pulsating buzzer.

#1100M - $600 - Same as #1100G_ but is ruggedized.
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General Monitors, Inc.

Catalytic Combustion

Type I sensor; most flammable gases

Type II sensor 3 hydrogen selective

H200 FS

Adjustable for full scales of 20% to 125% LEL

1% of LEL

117 _ 10%, 60 Hz

2v dc to I K ohm.

10%, 40 watts/channel

Panel type indicating meter and alarms.

1% of full scale

1 sec. and up depending on density of gas.

Remote probes - 200°F max., I00_ humidity.

Control units - lab environment.

Yes - several variations offered.

60 to 90 days.

One year warranty

Rack mounting, 5 channels. Modules 12 1/2" height.

5 channels - 60 ibs.

No

1961

$600/channel

30 days

Low temperature (200°F) diffusion head probes.

Many options offered - relay panels 3 meter panels_ special

probes. Up to 50 channel systems are available.
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SIZE:

WEIGHT:

PRICE:
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Goldak Company, Incorporated

Sonic - Sonic Range

#LC/4 "Dual-tronic"

Pipe - any size or type of metal.

Water, air, and low viscosity leaks at 25 psi or

more pressure.

Battery operated (4 "C" batteries in each transmitter

and receiver).

Visual and audible

Depth range - over 18 feet

Tracing distance 250 feet or more under average

conditions.

Determined by battery life.

Transmitter and receiver are the same size 9" x 12" x 3"

Total operating weight = 9 1/2 Ibs.

$329

Chief use is for locating pipes and the liquid, air_ or

fuel leaks therein.

w
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WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

The Goldak Company, Inc.

Sonic - Ultrasonic Range

Water - low viscosity fuel, air under 25 psi or more.

Model 727 "Hunter"

Leaks to 1/32"

9 volt radio type battery at 500 micro amperes drain.

Panel Meter - 2000 ohms - headphones

Complete stability +10°F to l15°F

No

Battery change only - approximately once a year.

No limit

6" high 3" wide

3 ibs.

Hand carried

Two years

$129.50

Immediate upon arrival

A crystal microphone is used as the detecting element.

Leaks can be detected in pipelines buried under earth,

hardtop, cement slabs, etc.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Gow-Mac Instrument Company

Thermal Conductivity

No - all gases/vapors other than air

21-200 Gas Leak Detector Battery Operated

High, Medium Low

10-3 cc-atm/sec. Helium

Battery operated with rechargeable pump batteries

Panel Meter/available with audible signal as accessory

21-210

2% full scale

2 seconds for 4 feet of sampling hose

50-100°F

No

Circuit batteries - approximately 300 hours

Pump batteries - 2-3 hours continuous duty

Indefinite

5 1/2" x I0 1/2" x 3"

8 ibs.

Yes, shoulder strap provided

3 months

Model 21-200 $4303 21-210 $510 (with audible signal)

Stock to 2 weeks

Frequency of audible signal varies with gas concentration.

Special units fabricated to customer specificiations.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MAR/£ET:

PRICE :

DELIVERY TIME :

REMARKS :

Gow-Mac Instrument Company

Thermal Conductivity

All gases/vapors other than air.

21-100 Gas Leak Detector (formerly Gas Hound)

High_ Medium, Low

1 x 10-3 cc-atm/sec. Helium

II0 volts_ 60 Hz_ less than 1 watt

Panel Meter/available with audible signal as accessory 21-110

2% full scale

2 seconds for 4 feet of sampling tubing

95-120 volts_ 50 ° to 100°F

No

Batteries used for readout require replacement after 3 hours

operation.

Indefinite

5 1/2" x I0 1/2" x 3"

8 Ibs.

Yes_ shoulder strap provided

1 1/2 years

Model 21-100-$280, Model 21-110 -$360 (with audible signal)

Stock to 2 weeks

Audible signal frequency varies with gas concentration.

Special units can be fabricated to customer specifications..
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MANUFACTURER: Granville-Philllps Company

OPERATING PRINCIPLE: Mass Spectrometer

All gases I to 750 AMU

"Spectrascan" #750

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

DELIVERY TIME:

1-50 AMU; i0-250 AMU; 100-750 AMU (Tri-range unit)

Minimum detectable total pressure --- I x 10 "15 torr

Minimum detectable partial pressure - 5 x 10 "15 torr

Resolution is i000 at mass 500

I15-230v 3 50-60 Hz_ 700w

Direct output from electron multiplier for use with

oscilloscope or recorder with an input impedance of

105 ohms or higher.

Peak height reproducibility better than _1% at N2 for

constant molecular concentration in ionizer volume

at I x 10-7 torr.

Continuously variable scanning rate from .025 sec. to

30 min. per mass range.

29 1/2" D x 20 3/4" W x 56 1/2" H

395 Ibs.

On casters

$13,635 - $15,135

Stock
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

.ENVIRONMENT EFFECTS:

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

DELI_RY TIME:

REMARKS:

Granville-Phillips Company

Pressure Change - Gas (non-conducting)

Series #212 _apacitance Manometer)

Choice of 4 sensing heads: 0-I, 0-I0, 0-I00, 0-I000 tort,

differential. Controller has full scale ranges of IX_

0.3X I 0.1X 3 0.03X_ and 0.01X.

Minimum detectable pressure differential:

0-I _orr model: 5 x I0"_ tort

0-i0 tort model: 5 x I0"_ tort

0-I00 tort model: 5 x I0-_ tort

0-I000 tort model: 5 x I0 "A tort

l10-120v, 50-60 Hz, or 220-240v, 50-60 Hz, 40w

Nulllng method or direct readout on panel meter.

Accuracy: T2% of full scale (after calibration)

Designed to operate at normal room temperature.

Balance unit cont_olled at 50°C. Sensor temperature
sensitivity = i0" torr/°C on I0 tort unit.

Sensor and balance unit: 3 3/4" diameter x 3 1/2" long.

Controller: cabinet style - 8 1/4" x 19 1/2" x I0"
rack - 7" x 19" x 9"

Controller: cabinet 26 ibs.3 rack 17 ibs.

Yes

Controller: $585

Sensing and balance units: $664 to $761.

Stock item

Sensing head can be baked at 450°C
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

ENVIRONMENTEFFECTS:

MAINTENANCE:

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

DELIVERYTIME:

REMARKS :

Granville-Phillips Company

Ion Gauge

Controller: Series 3263 Model 102

Ionization Gaugej Series 274 (hot cathode-Bayard Alpert

type)

i0 to I0 "II tort in decade steps

Adjustable

105 to 125v_ 50/60 Hz_ 2 amps

-3
Panel Meter - Pirani gage mode for pressures above I0

torr and in ion gage mode for lower pressures.

Analog output connector: lOv (I ma maximum)

I% F.S.

Electrometer zero drift, after 30 minute warmup,

.03% F.S/hr. or 5 x i0 "Lo amps/hr, whichever is larger.

Repair facilities maintained at factory.

Controller: 19" x 7" x 9" - rack mounting

Ionization gage tube 2 1/4" diameter_ 6 3/4" long

Controller - Indicator: 20 ibs.

Easily movable

Complete gage: manual range switching $850

Automatic range switching $940

Available from stock

Solid state circuit boards are quickly replaceable

from the factory.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIV ITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TI]_ :

ENVIRONMENT EFFECTS :

PORTAB IL ITY:

PRICE :

REMARKS :

Hastings-Raydist 3 Inc.

Flow

Hastings Mass .Flowmeter - LF series

15 ranges 0-0.5 to 0-203000 std. cc/min.

Down to 0.01 std. cc/mln, with the lowest range

model (LF-Db)

ll5v, 50 to 400 Hz

LF-D5 must be used with a one millivolt high impedance my

potentlometer. Other models have an indicating meter and
can be used with a 0-2 mv recorder.

Within 1%

i0 seconds

No gas pressure correction is required from 0. i psia to

250 psia or gas temperatures up to 200°F.

Yes - by hand

$365 - $725 dependent on requirements

Linear scale models and integral amplifiers for 0 - 5v dc

output, are available. Add $200 for linear scale and

$450 for amplifier.

High sensitivity flow sensor can function as leak detector

by measuring flow rate from an encapsulated component of

a pressurized system.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE:

PORTABILITY:

PRICE :

REMARKS :

The Hays Corporation

Electrochemical Cell (membrane type galvanic cell)

Oxygen

Model 623.01 Electro-02-Chem Portable Membrane
Oxygen Analyzer.

0 to 5%, 0 to 10% 3 0-25% 02

2 1/2" long scale on the panel instrument.

None required. Unit is a simple galvanic cell and generates

its own power.

Panel instrument calibrated in percent oxygen.

25 my dc; requires potentiometric receiver.

1% full scale deflection

Dead time 1 second; time constant 6 seconds.

Sample gas condition: Temperature +30°F to 120°F.

Pressure -2 psig to +5 psig. Flow 0 to i0 CFH.

The operating life of the cell is approximately 5

months or 30,000% hours (whichever comes first).

7" L x 5" W x 4 1/4" D

Yes

$345

Not affected by non-corrosive redox inactive gases such as

H23 N2, CO_ A, He and H20. Not affected by CO 2 or most
organic gases such as methane, ethane s propane, butane,

ethylene_ propylene_ etc. Corrosive and redox active gases

such as SO2, C12, and H2S in large concentrations can
interfere.

After a cell completes its life cycle_ it may be discarded

for a new replacement cell or recharged in the field.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENS ITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

SIZE :

WE IGHT :

PORTAB IL ITY :

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

The Heckerman Corporation

Bubble (Liquid Applicant)

Type I for detecting oxygen gas at room temperature
(35°F to 160°F).

Type II for detecting oxygen gas at -65 ° temperatures

(-65°F to +35°F).

Type III for detecting all other gases at ambient temperatures.

Heck-Check Type I, II and III.

0.25 std. cc per hour

Visual

4 ounce bottles_ gallon jugs and 55 gallon drums.

(See Size)

4 ounce bottles for tool kit

3 years

$22.00 - $35.00 per dozen (4 oz. bottles)

Stock

This is a bubble type liquid leak detector for use on gas

pressurized systems. A mass of white foam forms at the

leak source.

Type I and Type II meet spec. MIL-L-25567B (ASG)

Non Flammable; Non-Toxic; Harmless to skin & clothing.

m
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES :

SENS IT IVITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME :

REMARKS •

Hewlett-Packard Company (Delcon Division)

Sonic (Ultrasonic Range)

None. Senses all gases

Ultrasonic Translator Detector.

4916A, 4918A.

36 to 44 KHz

0. i std. cc/sec. 1.0 psi-minimum pressure

Self-contained battery supply

Models 4917A, 4905A,

Audio signal or audio signal and panel meter

Speed of sound

Operating temperature -20 to +55°C. Operation unaffected

by wind up to 40 mph.

Yes

Replace batteries 360 to 700 hours of service

5-10 years

Min. 4" x 7" x i 3/4"

5 to ii ibs.

Yes

5 years

$525.00 - $850.00

Factory Stock

Models 4917A and 4918A are listed by Underwriters'

Laboratories, Inc._ for use in hazardous locations

Class I, Group D.

Hand manipulated probe is 1 3/8 in diameter and 6 1/4

long. It does not respond to audible noise.

30-113



_-l_

MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME :

REMARKS:

Highside Chemicals, Inc.

Chemical Indicator - Dye - Pressurized

"Trace"

0-5000 psi -40°F to 350°F

Depends on time. (Small leaks take longer)

Red color

Depends on size of leak.

Indefinite

2" x 2" x 5"

4 ounces

Yes

Twenty years

$1.15 - 4 ozs. plastic bottle to $18.40 for 1 gallon

can.

From stock Clifton, New Jersey

An intensely colored refrigerant oil added to the

system refrigerants is circulated through the system.

Leaks are identified by bright red spots on outside

of system at point of leak. "Trace" is usually

visible through ice or frost. Coloring is harmless

to refrigerating system. Can locate leaks that start

and stop due to temperature or pressure changes.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Highside Chemicals_ Inc.

Bubble - (Liquid or foamapplied)

Leak Finder Foam

Bubble

Dependson size of leak

Usable in the ranges -50°F to 212°F pressures
0 to 5000 psi. Humidity does not effect use.

Indefinite

2" x 2" x 9"

7 ounces

Yes

One and one-half years

$1.25 per 6 ounce plastic bottle

From stock Clifton, New Jersey

Foam from plastic bottle applied to suspected leak.

Leak causes bubble to form.

Adheres to surface more readily if surface is dry.

Non-flammable - will not burn or support combustion.

Non-corrosive, water soluble - may be wiped off with

a damp rag. Not suitable for use on vacuum lines.

Usable on all piping and machinery where refrigerantsj

gas or air leaks may occurr
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MANUFACTURER:

OPERATING PRINCIPLE:

• SPECIFICITY:

MODEL NO. &

TRADEN_:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGKr :

PORTAB IL ITY:

TIME ON MARKET:

REMARKS :

Hilger & Watts, Ltd. (Hilger-l.R.D. Ltd., Division)

Calibrated Instruments, Inc.

Infrared (Infrared absorption - non-dispersive type)

As desired, detector tube used determines specificity of
unit.

Type SC/LC

Up to 6 ranges if specified by customer (meter calibrated

in volume concentration).

Will locate leaks to 10-2 lusec (1.28 x 10 -5 std cc/sec).

95-115 v, 60Hz or 190-260 50Hz i00 va.

Panel meter and 50 to 550 microamps into external circuit

not exceeding 200 ohms.

±1% of full scale reading.

Approximately 15 seconds (depends on flow-rate and range).

No effect under normal ambient temperature and humidity
ranges.

No

6 months interval

Approximately I0 years

20 1/4" high x 18" wide x i0 1/2" deep

Approximately 50 ibs.

Transportable

15 years

Customer must supply information on ranges desired,
analyzer tubes needed, and detector tubes needed.

Modifications available to conform with customer's

requirements.

Most heteroatomic gases measured - except CO 2 and H20.
Typical are carbon monoxide, nitrous oxide, sulphur

hexafluoride, sulphur dioxide, etc.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

SIZE :

PORTABILITY:

PRICE :

REMARKS :

Hoke, Incorporated

Bubble (Liquid Applicant)

69001 "Chek- Seal"

Visual (bubbles or foam)

Large leaks will form large bubbles instantly.
Small leaks form white foam within 60 seconds.

Temperature range: 15°F to 180°F

8 oz. bottles

Yes

$1.75/8 oz. bottle; $9.45/6 - 8 oz. bottles

Chek-Seal is a clear, non-flammable liquid which

requires no mixing, and is safe and easy to use.

It dries clean leaving no residue or toxic odors.
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MANUFACTURE R:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RANGES :

SENSITIVITY:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Honeywell, Inc. (Apparatus Controls Division)

Ultraviolet Absorption

O

Any v_por which absorbs ultraviolet light from 1850 A to

2250 A. Example: perchloroethylene, nitrogen dioxide,

hydrocarbon refrigerant 12, hydrazine.

Y457 A

llSv, 60 Hz

Visual indication on panel instrument. Current output

for recorder - ±50 microamperes.

Single - 0 to i00 ppm or 0 - 5000 ppm determined by vapor

of interest.

_ppm depending on vapor.

±15% at control point during repeated standardizing cycles.

Approximately 5 seconds

12Ov (+I0_ -15%) Ambient temperature: 50 to l15°F at

amplifier and detector. Allowable separation: i00 feet

maximum between amplifier and detector.

Yes

Normal servicing - yearly check of electronic tubes built-in

standard cell used for automatic self-standardization of unit.

5 years

Amplifier - 8 1/2" x II" x 5" Detector 6" x 6" x 19"

Approximately 30 Ibs.

Can be hand carried

2 years

$591.30

4 weeks

Vapor Detector consists of RTI92A Amplifier and C7025

detector unit.

Detector assembly has a fixed beam of ultraviolet radiation

from an argon lamp to a self-quenching ultraviolet sensing

tube. Fan draws in air sample to be measured. Stream

absorbs UV energy in direct proportion to amount of raper

present, thus affecting the count or firing rate of the i_

sensing tube. Detector output is a square wave of constant

amplitude and duration for each count of the tube. Amplifier

provides means of measuring vapor content against set control

reference point. Panel indicating: instrument indicates

variations from set control reference point.
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_NUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WEIGHT:

P ORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TLME :

REMARKS :

Houston Atlas_ Inc.

Catalytic Combustion

Any flan_nable gas or vapor is detected in the range

below the lower explosive limit (LEL)

Model 510 "Duotector"

0-4% Methane or 0 to 100% LEL of any fla_nable gas.

0.4% of gas in air

llOv 50/60 Hz

100my from I000 ohms

1% full scale

5 sec. to 90% of final value

-20 to +40 degrees C - Coefficient is 0.1% per

per degree C.

Only as an option

Replace detecting element once each 4 months of

continuous operation. Check zero once per week.

20 years

5 x 7 x 8 inches

14 ibs.

Hand carry. Battery internal with charger for 8 hours use.

5 years

$425.00 for single channel unit

30 to 60 days

Available in multichannel cabinets for simultaneous

monitoring of several remote locations to 1,500 feet

with sensing heads.

Custom arrangements and systems available.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

Japan Vacuum Engineering Co., Ltd.

Mass Spectrometer

Helium gas tracing

Model DIMS

1PPMHe

Leak down to 1 x I0 "II tort liter/sec can be detected.

lO0v 3 50/60 Hz_ 1400w

Panel meter (300 ma/torr for He)

3% full scale

50_ change in one second with a standard leak only.

0.25%/°C

No

Check sensitivity 3 no specific servicing internal.

Pumping system 7 years_ ULVATUBE shorter

750 mmW x 760 mmD x 1090 mmH

300 kg

Mounted on wheels

One year

$6_000 (FOB price)

4 weeks
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MANUFACTURER: Japan VacuumEngineering Co.j Ltd.

OPERATINGPRINCIPLE: MassSpectrometer

SPECIFICITY:

MODELNO.&
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Helium gas tracing

Model DLMS-P

1PPM He

Subject to the pumping system

100v, 50/60 Hz, flOw

Panel meter (300 ma/torr for He)

3% full scale

50% change in one second with a standard leak only.

The pumping speed at the test port I liter/sec.

0.25%/°C

No

Check sensitivity 3 no specific servicing internal

Pumping system 7 years_ ULVATUBE shorter

490 mmW x 323 mmD x 250 mmH

15 kg

By hand

One year

$4_000 (FOB price)

4 weeks

Model DLMS-P is a portable type of which pumping system

should be optionally provided.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIVITY:

EXCITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Johnson-Williams Products - Bacharach Instrument Company,

Division of American Bosch Arma Corporation

Catalytic Combustion

Combustible gases or vapors

4m

0-I.0 LEL

1% of full scale

Battery operated. Internal "D" dry cells (8)

Visual reading of millimeter

3v

2% of full scale

3 seconds

Useful over normal ambient ranges 0-120°F.

No

Depends on battery life (dry cells).

5 years

6" x 3" x 5"

4 Ibs.

Can be hand carried, fully portable.

ii years

$100

Stock

Can be used for detection of leakage of fuel gases

from piping and vessels under pressure, toxicity

of working areas, and detection of hydrocarbons,
etc. Various accessories available.

Hand operated aspirator bulb for sample.

Many additional accessories and modified Model G

designs are available for specialized applications.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

MAINTENANCE:

PORTABILITY:

PRICE:

REMARKS:

Johnson-Williams Products - Bacharach Instrument Company
Division, American BoschArmaCorporation

Catalytic combustion

Usual combustible gases and vapors

Model G-P

Normally calibrated 0 to 1.0%of LEL

Rechargeable batteries

Panel indicating instrument

5 hours operation from fully charged battery.

Yes

Approximately $200

Integral sample pump
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADE NAME :

RANGES :

SENSITIVITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Johnson-Williams Products - Bacharach Instrument Company,

Division of American Bosch Arma Corporation

Catalytic Combustion

Combustible gases or vapors

#SS-P

0-i.0 LEL & 0-i000 ppm

1% of full scale

Battery operated. Ni-Cd rechargeable batteries (2)

charger built into unit.

Visual reading of millimeter

2% of full scale

3 seconds

Useful over normal ambient ranges 0-120°F. Humidity

compensator required. Is supplied with unit.

No

Typically, every i00 hours.

5 years

8" x 3" x 6"

7 Ibs.

Can be hand carried, fully portable.

3 years

$350

Stock

Can be used for detection of leakage of fuel gases from

piping and vessels under pressure, toxicity of working

areas, and detection of hydrocarbons, etc.

Various accessories available. Has internal sample

pump.

Basic scale calibrated for benzene. Conversion factors

given for other gases or vapors.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

MAINTENANCE :

PORTABILITY:

PRICE :

REMARKS :

Johnson-Williams Products - Bacharach Instrument Company

Division of American Bosch Arma Corporation

Catalytic combustion

Principally used for the detection and measurement

of natural gas concentrations.

Model H-P

Dual range (0 to 1.0_ LEL - 0 to i00% natural gas)

Rechargeable batteries

Panel indicating instrument

5 hours operation from fully charged battery

Yes

Approximately $250

Integral pump.

Actuates alarm lights and relays indicating lights

for safe operation and filament burnout.

--l-
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME:

MAINTENANCE:

WEIGHT:

PORTABILITY:

PRICE:

REMARKS:

Justrite Manufacturing Company

Halide Torch - Flame Color

(Alcohol flame in contact with heated copper turns

green in presence of refrigerant gas R-12).

(usually halide) non-combustlble refrigerant gas or

vapor.

#12360

Refill with anhydrous alcohol when necessary.

1 1/2 Ibs.

Can be hand carried.

$16.00

Burns for 45 to 60 minutes on full charge.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

PRICE :

REMARKS :

Kelite Chemicals Corporation

Bubble - (Liquid Applicant)

Bubble Fluid - I0

Bubble

Immediately if container is pressurized.

Suited for normal ambient temperatures.

Depends on use

Various

8.39 ibs./gal.

Mixture can be hand carried.

$2.35/gallon in 55 gallon drums.

$2.65/gallon in 15 gallon kegs.

One part Bubble fluid mixed with 20 to 30 parts

water. Mixture applied with brush. Fluid is

non-toxlc and non-flamable.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENS TTIVlTY:

REPEATABILITY:

RESPONSE TIME:

ENVIROhMENT EFFECTS :

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

UMARES :

Kobbe-McCawley Corporation

Chemical Indicator-Reagent

Reaction: Burning S vs. NH 3. Nearness or contact
white cloud forms.

Used for the detection of Armenia RefriEerant8 as
above.

Anmnonla Leak Detector of Sulphur Taper

Detects by nearness of sulphur taper to leakins
aE_onla.

Extremely small NH3 leaks are detected.

Eisht inch taper may be reused.

Immediate

May be used near dry or damp contacts. Humidity
not deterent.

None - expendable

Indefinite

8" L x 1/8" D (standard) may be Cut to lesser lengths,

.01 gram

Yes

About 25 years

SEE BELOW

Immediate

Item made of high grade sulphurj melted and
impresnated into cordese.

PRICES: Boxes 200 aa-extra long - slow burning:

1 box - $4.00
2-11 bx8 - $3.75. ee.

12 bxs - $39.00/24 for $76.00
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

OUTPUT S IGNAL

IMPEDANCE :

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

PRICE :

Lenk Manufacturing Company

Halide Torch - Flame Color

(Color of flame turns green in presence of a non-

combustible refrigerant gas leak).

Non-combustible refrigerant gases.

#425

Visual color change in flame.

Replace compressed gas cylinder

Depends on length of time used

14 3/4" high - 3" diameter

1 3/4 ibs.

Can be hand carried

$9.00
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

Lion Research Corporation

Flow - (Pressure drop across a calibrated length of pipe

measured with a sensitive transducer.)

Any non-corrosive gas or non-conductlng liquid.

FM 400 Flowmeter

3, i, .3, .I, .03, ,01, .003, .001 cc/min, stp

Maximum for lowest range is .00003 liters per minute

Excitation volts: II0, 60 Hz, Power: 5w

I0 ohms

.1%

Typically 0. i seconds

Temperature range -45 to +165°F

Humidity 0 to 100%

Yes

2 years continuous

5 High 7 Deep 7 1/2 wide in inches (the driver)

4 1/2 High 3 1/2 Deep 6 wide in inches (the sensor)

4 1/2 Ibs. (the exciter)

3 1/2 ibs. (the sensor)

Portable except that it requires ii0 volts

On market for 3 months

$1295

From stock - 2 weeks
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFIC ITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENS ITIV ITY:

EXC !TAT ION:

OUTPUT S IGNAL

IMPEDANCE :

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Loenco, Incorporated

Thermal Conductivity

Highest sensitivity to helium or hydrogen

Loenco

Down to i00 ppm full scale

Depends upon sensing and background gases

Batteries or ac line supply

Approximately 200 ohms

0.5% of scale

Approximately 5 sec. for 90% response

Depends upon required specifications.
90-130 volt line makes no detectable response.

Yes, goes off scale

Zero adjust when used. Span check approximately once

per month. No specific service interval.

i0 years except for pump and detector elements.

Depends upon application requirements. Size, exclusive

of recorder, as small as 5" x 5" x I0".

As low as 5 ibs.

Some units portable

Basic detection system since 1956

Ranges from $500 to $2000, depending upon

performance and service requirements.

4 - 8 weeks 3 depending upon requirements

Loenco builds custom leak detection systems based on

thermal conductivity using either thermistor or hot wire

sensing elements. In some cases detection sensitivity

(at 28times short term noise) can be as low as one part
in i0 in sampled gas. Flame ionization and electron

capture detection systems are also manufactured.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME:

Lumidor Products Corporation

Sonic - Ultrasonic range

LP-600 Detec-tor

35-45 kc

.001" opening at 6 psi

9v transistor type radio battery

Audible and visual

Unconditionally guaranteed for one year. Thereafter

unit will be repaired at the factory for a maximum

cost of $22.50.

i0 years

4" x 7" x 2"

6 ibs.

Yes - furnished with carrying case and carrying sling.

5 years

$200

7 to i0 days
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MAN_JFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECT :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

MKS !nstruments_ Incorporated

Pressure Change - Gas (non-corrosive)

MKS Baratron Series 90

0 to ±I to 0 to 30 torr, differential (each sensor has

8 ranges)

i x 10-5 torr maximum

105 - 120v at 50 to 400 Hz

Analog output 0 to ±I00 mv dc and 0 to 500 mv ac. Also

panel meter and 5 place manual digital dials.

0.05% of reading

I0 milliseconds for a 63% response to a pressure step

Temperature manually compensated to 200°C with i0 turn

potentiometer. Uncompensated temperature error is .02

to .05% of reading per °C.

No

Calibrate at 6 month intervals

5 years minimum

Sensor: 2 1/2" diameter_ 2 1/2" long

Electronic Unit 2" x 4" x 3"

Indicator Unit 6 3/4" x 19" x 5 1/4"

Total = 42 Ibs.

Easily movable

Two years

Sensor system - $1470 to $1560 depending on range

Indicator unit - $1280

30 days

Designed for high temperature service. Mechanical element

of pressure sensor is separated from the intermediate elec--_
tronlc module. Pressure sensor can be baked at temperatures

of 350 to 400°C.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADE_ :

RANGE S :

SENS ITIV ITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

MKS Instruments Incorporated

Pressure Change - Gas (non-conducting)

MSK Baratron Series 77H

Full scale ranges: + or - differential pressure, 0 to I to

0 - i000 torr with 8 sensitivity settings for each range

0.001% of full scale

105 - 120v at 60 to 400 Hz

Panel meter and 4 place digital dials.

Also analog output 0 - ±I00 mv dc and 0 to 500 my ac

Meter readout i to 3% of full scale, depending on range.
On 4 place digital dials - 0.02% of full scale + 0.15% of

reading.

i0 milliseconds for a 63% response to a step pressure

change of 30 tort at 760 torr

Temperature controlled at 120°F

No

Calibrate at 6 month intervals

6 years minimum

Sensor 4" x 4" x 3 3/4" Indicator Unit 9" x 14" x 12"

Sensor plus cable: 7 ibs. - Indicator: 40 ibs.

Easily movable

6 years

$1195 to $1385 depending on ranges selected

30 days

High speed repetative production test leak detecting

systems with line pressures up to 500 psi and various

degrees of automation and digital readout are available.

Special units are available for liquids.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABIL ITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

MKS Instruments3 Incorporated

Pressure Change (Gas)

Model i00 (Auto-Digital MKS Baratron)

* 0 - I000 torr differential pressure, with eight

full scale sensitivity settings

As low as 5 parts in 106 of nominal rating

ll5v, 60 to 400 Hz

±pressures are indicated automatically to 5 decimal places

on a nixie display, a 6th place is provided for over-range.

Condition of balance is indicated on a panel meter.

Parallel Binary**

±0.02% of reading + i digit. Interpolator permits

higher repeatability over first 1% of range.

Approximately 250 milliseconds required to achieve balance.

Uses sensors of Model 77H and 90 units. See temperature
effects listed for them.

Calibrate at 6 month intervals

5 years minimum

12" x 18" x 12"

25 ibs..

No

2 years

$5,000 and up

Units are special building block types for systems approach.

A variation of this equipment having 18 bit binary coded

output with no lighted front panel display is available as
Model 105.

*Instrument is designed to operate with and requires an MSK _t

Baratron variable capacitance pressure sensor. See information

on Models 77H and 90.

**Coded Decimal electrical output is available on rear

connector.
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F_UFACTURE R: Magnaflux Corporation

OPERATING PRINCIPLE: Chemical Indicators - Dye (Fluorescent)

MODEL NO. & Zyglo

TRADENAME:

EXCITATION: l15v, 100w (for black light)

OUTPUT SIGNAL

IMPEDANCE :

Flourescent glow under black light

RESPONSE TIME : Penetrating time varies with materials being tested

and type of defects.

ENVIRONMENT EFFECTS: Material must be cleaned before application of penetrant.

PORTAB IL ITY: Portable kit

PRICE : $125.00 for test kit.

12 oz. spray can penetrant - $3.50

12 oz. spray can wet developer - $2.50

12 oz. spray can cleaner - $2.00

12 oz. can dry developer - $1.65

In cases of 12

REMARKS : Above information is for ZA-43 portable test kit. This

kit includes: 2 pressure cans of penetrant, 2 pressure

cans of developer, I pint can of dry developer, 4 pressure

cans of cleaner, Black-Light unit, cleaning cloths, wire

brush, and steel carrying case.

Penetrants, wet developers, and cleaners are available in

pressurized cans or in bulk quantities. Can be applied

by dipping_ flushing_ spraying, or brushing.

Dye penetrant is applied to surface. Developer reveals
defect. Fluorescent under black light.

Three types of penetrants and two types of dry developer

available. Zyglo is approved to Mil-Spec MIL-I-25135.
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MANUFACTURE R:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME •

RANGE S :

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

DOES IT FAIL SAFE:

LIFE EXPECTANCY:

SIZE :

WEIGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Marcol, S. A. (M. Paquet & Co., Inc., distributors)

Sonic - Sonic Range (non-powered stethoscope)

Airsonlc

0 - 17000 Hz.

Unit is non-powered

Audible - earpieces

Good

Various depending on conditions

No

For all practical purposes limitless

12" x 2 1/2" x 2 1/2"

4 ibs.

Equipped with a carrying case

In U.S. I0 years

$139 net delivered_ destination

7 days

Tunable to acoustic frequency of interest using tuning

knob with reference dial. Unit is equipped with six

demountable attachments.

Can detect gas leaks which are under pressure.

Can locate liquid leaks under pressure.

Can locate vacuum leaks.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFiCITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

Ob"fPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Mast Development Company

Electrochemical Cell

Strong oxidants, including ozone; chlorine, iodine,

and nitrogen dioxide.

Detector Model 724-21; with recorder - Model 725-21

0 to i00 PPHM by volume, 0-i0 PPHM by volume for

strong oxidants

1PPHM by volume or less of ozone, chlorine and iodine.

12Or, 60 Hz, battery operated model available.

0-20.0 microamperes represents 0 to I000 PPB by volume

±2% for same instrument

75% of full reading in 30 seconds

Negligible

No

Needs chemical solution every 3 days.

Several years - I year full guarantee

Detector unit 11.5" high x 7.5" x 6.5"

Strip chart recorder 9" x 6.25" x i0"

Detector unit - 10.5 ibs.

Strip chart recorder - 14.51bs-

Can be hand carried

3 years

Detector unit - $950

Strip chart recorder - $545

30 days after receipt of order; rental program

available.

KI solution is oxidized by oxidant which depolarizes

cathode, allowing electric current to flow. Current

flow can be measured on strip chart recorder. Pumps

its own air sample. Continuous signal.

Nitrogen oxide recorder and meter available.

Accessories available.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

The Matheson Company, Inc.

Thermal Conductivity

None - responds to thermal conductivity of

gas of interest.

Model 8013

F ive

9 x 10 -5 std. cc/sec. (R-12); 3.6 x I0 -5 std. cc/sec.

(Hydrogen); 5.4 x 10 -5 std. cc/sec. (Helium)

Self-contained - 6 size D batteries

Audible and visual signals.

Approximately 2 seconds

No

Replace batteries every 40 hours of use, other -

once a year.

Minimum of 5 years

3 1/8" x 7 3/4" x 9 3/4"

Approximately 4 pounds

Can be hand carried

4 years

$195

Stock item. 3 - 5 days.

Can be used to detect any type of leak in any constant

background.
Is more sensitive to gases with larger thermal conductivity

difference than background. Wheatstone bridge with 4 tilament_

Detector responds to changes in gas composition. Stable

composition returns output to zero. _l
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MANUFACTURE R:

OPERATING PRINCIPLE:

SPECIFIC!TY:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIVlTY.

EXCiTATION_

OIYlPUT SIGNAL

IMPEDANCE

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

The Matheson Company, Inc.

Chemical Indicators - Reagent (color change in sensor

detected by photoelectric system)

Carbon Monoxide

8010 and 8011

0-i000 ppm CO full scale

50 ppm CO (2% full scale)

Model 8010_ 120v, 60 Hz 3 3w

Model 8011, Battery operated/ac

Visual on indicating instrument and audible alarm.

Typical response time is 45 seconds for i000 ppm
(full scale).

Voltage range: i05-125v ac

Not sensitive to ambient changes of temperature and
humidity.

No

Replacement of indicating tab required after tripping
alarm, otherwise maintenance is minimal.

5 years

8 5/16" x 4 I/4" x 3 3/16"

3 1/2 ibs.

Both models 8010 and 8011 can be hand carried

4 years

Model 8010 - $124050. Model 8011 -$190o00

Stock item. 3 to 5 days.

Color change of tab in sensor is detected by photoelectric
system.

When CO concentration reaches a toxic level, a relay is

tripped and a built-in alarm is sounded.

In ventilating control, the alarm may be supplemented by

setting into action a ventilating system.

Model 8011 - when operated on ac, automatically converts

to battery operation in event of line failure.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVlTY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT :

PORTAB ILITY :

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

The Matheson Company

Catalytic Combustion

Combustible gases (methane, ethane, propane, gasoline, etco)

8420 and 8421

0-I00% lower explosive limit

2% full scale (for methane)

4 standard "D" flashlight cells

Panel meter reading and alarm

2% full scale

7 seconds with five feet of hose

50 to 120°F

No

8 hours of continuous service

5 years

6 3/4" x 5 1/2" x 2 1/2"

5 1/2 ibs. with batteries

Carrying case with shoulder strap

i year

8420 - $180.00 8421 - $270.00

Stock item 3 to 5 days

Operation based on balanced Wheatstone Bridge principle.
Combustibles in sample are burned on platinum filament,

changing the resistance and unbalancing bridge.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENA_:

SENSITIV ITY:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Met-L-Chek Company, Inc.

Chemical Indicator - Visible Dye or Fluorescent Dye

(liquid penetrant)

"Met-L-Chek Flaw Findr"

Will detect cracks as small as a few ten thousandths

of an inch.

Red dye on; white background, or bright fluorescent

indications under black light.

Penetrant dwell time - 5 minutes or longer.

Approximately 5 minutes developer.

Recommended use range, 60°F to 90°F or slightly more.

Indefinite shelf lifeo

12 ounce spray can, pints, quarts, gallons,

5-gal, 55-gal drum.

Kit 5 ibs, complete, 55-gal drum 430 ibs. other

sizes in proportion.

Kit form 3 spray cans

15 years

3 can kit - $14.00 - 12 oz. spray can $4.25.

Prices lower on larger quantities and sizes°

Stock - i week (policy to ship all orders same

day received).

Qualifies under pertinent portions of MiL-I-25135C and
NAVSHIPS 250-1500-1.
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MA_\_UFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSIT_FiTY:

EXCITATION:

OUTPUTSIGNAL
LMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LiFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Mine Safety Appliances Company

Infrared Absorption

Gas selectivity is obtained by specific detector
cells and infrared beamfiltering.

"LIRA" Model 200

Customerto specify

0-i0 ppmN20 (Nitrous Oxide) as tracer gas.

llOv_ 60Hz_200w_(50 Hz designs also available)

Visual reading on indicating meter. 0-I00 mv dc output
for potentiometer recorder.

.+1%of full scale. Zero drift is less than 1%of full
scale in 24 hours.

90%of final reading in 5 seconds.

Temperature range of 30 to 120°F. Constant voltage
transformer supplied with equipment.

No. Canbe madefail safe at extra cost.

Zero and span check once a month.

I0 years

19" x 12" x 12 3/4"

75ibs.

Is portable

I0 years

$2400to $3230

60 - 90 days

Variations and modificatiorsare available to conform
with customer's requirements.
Can detect most heteroatomic gases typically; nitrous
oxide3 sulphur hexafluoride2 s_iphur dioxide_ etc. Unit
can be sensitized to pressurized gas normally present
within a system.

Optional accessories: recorder_ alarm circuit_ calibration.
samples_complete console mounted system with probe_ etc.

30-143



MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL No. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITATION:

OL_ITUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Mine Safety Appliances Company

Catalytic Combustion

Combustible gases and vapors

Model No. 20

0-100%LEL

5% of full scale

8 standard flashlite batteries

Panel meter

10% of full scale

30 seconds

No effect at livable ambients

No

Periodic battery replacement

20 years

5" x 4" x 6"

6 ibs.

Yes

12 years

$152

From stock - require one week for calibration

for specific gas.

Models available with calibration for use in sensing

pentane 3 acetone_ natural gas and petroleum vapors
in air.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES :

SENSITIVITY:

Mine Safety Appliances Company

lon Gauge

Steady state ion current (generated by alpha emitter in ion-

chamber) drops when particulate matter is introduced into the

chamber. Incoming gas or vapor of interest is converted into

particles by a reagent.

Can be made specific to a particular family of gases with

the proper selection of reagent.

Portable "Billion-Aire"

Varies with gas of interest. Examples:

Nitrogen Dioxide (or N204): 0-i0 ppm to 0-250 ppm

Hydrazine: 0-3 ppm to 0-50 ppm

UDMH: 0-3 ppm to 0-50 ppm

Varies with compound to be detected_ examples: Nitrogen

Dioxide (or N204): 0.5 ppm Hydrazine: 0.15 ppm UDMH:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATAB IL ITY:

RESPONSE TIME :

DOES IT FAIL SAFE:

MAINTENANCE :

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Either ll0v ac or from self-contained nickel-cadmium

rechargeable batteries. Charger is self-contained.

Meter reading_ audible signal 3 flashing red light

0-i0 mv or 0-i00 mv dc for recorder

_2% of full scale. Zero drift: less than 1% in 8 hours

90% of final reading within I0 seconds recovery time

the same.

No

If used continuously for period of 16 hours_ batteries

should be recharged.

8" x 14" x 8"

18 ibs.

Portable model - can be hand carried

8 years

$1495

60 days

Customer should furnish specific information on his

requirements_ environmental conditions, etc.

Field calibration kit available for many gases.

Billion-Air Trace Gas Analyzer also available for

continuous measurement of various compounds. This

is not a portable unit.

30-145



---L_

MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIl SAVE:

MAINTENANCE :

LIFE EXPECTANCY :

SIZE :

WEIGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Mine Safety Appliances Company

Catalytic Combustion

Combustible gases and vapors

Model No. 2A "Explosimeter"

0-100% LEL

2% LEL

6 flashlight batteries

Panel meter

10% of full scale

30 seconds

No effect at livable ambients

No

Replace batteries after I0 hours of continuous

operation.

20 years

3 3/8" x 5 3/8" x 5 1/2"

4 Ibs.

Yes

i0 years

$i00

From stock

Models available with calibration for use to measure

oxygen, hydrogen, acetylene or gasoline vapors in air.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ONMARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Mine Safety Appliances Company

Dual System. One is Catalytic Combustion.

Second is Thermal Conductivity.

System #i - combustible gases and vapors

System #2 - none

Model No. 53 - "Gascope"

System #i - 0 to 100% L.E.L. natural gas

System #2 - 0 to 100% by volume natural gas

5% of full scale

8 flashlight batteries

Panel meter

10% of full scale

30 seconds

No effect at livable ambients

No

Periodic battery replacement

20 years

6" x 4" x 5 3/4"

6 Ibs. 5 oz.

Yes

15 years

$157

From stock

Either system is available as a separate instrument.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADE NAME :

RANGES :

SENS ITIVITY:

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Minear Scientific Instruments

Sonic - Sonic Range

"Leakscope" I00

Complete audio spectrum

At a pressure of 80 torr - air detected escaping thru
hole 0.0005" in diameter.

Depends on care taken with use.

About the size of stethoscope

8 oz.

Can be hand carried

Approximately 5 years

$22.95. Adapters: $6.95 each.

2 weeks after receipt of order.

Specially designed probe amplifies any air turbulence -
does not contact surface.

Adapters are available to contact flat or difficult to

reach locations. Three different shape adapters,

"T", "_' and "J".
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

SENSITIVITY:

OUTPUTSIGNAL
LV_EDANCE:

REMARKS:

Minnesota Mining and Manufacturing Company-
Chemical Division

Immersion

Inert Perfluorinated Liquids
Type Numbers: FC323FC78, FC77, FC753FC43

Leaks as small as 10-7 std. cc/sec.

Gasbubbles

These fluids are available with boiling points from
88 to 345°F and Pour Points from -58 to -150°F. They
are non-reactive, good dielectrics, non-toxic, colorless,
tasteless_ essentially odorless, non-flammable and drain
clean. Surface tension is about one-fifth that of water.
Exampleof application: Diodes are immersedin a
fluorocarbon liquid maintained at 140°C. Air trapped
within the componentexpands3 forcing air bubbles through
seal imperfections. By using a lighted magnifier, bubbles
can be detected to the sensitivity stated above.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE :

RESPONSE TIME :

MAINTENANCE :

SIZE :

WE IGHT:

PORTABILITY:

PRICE :

DELIVERY TIME :

REMARKS :

Moak Machine and Foundry Company

Inwnersion

M34

Air (60 psi)

Air bubbles in water

Depends upon size of part being tested

Normal maintenance as for any mechanical equipment

Depends upon size of part being tested

Varies again upon part being tested

Usually not portable

Varies with each part being tested

Depends upon how much design is needed

Leak detection systems are designed and fabricated

for specific components in production lines; for

example, auto engine blocks.

The above equipment provides pneumatically or hydraullcally

driven cylinders which seal off openings in a part to be

tested. Tests are conducted by applying 60 psi of air to

the sealed inner cavity of the test piece and immersing

it into a water tank. Leaks will be indicated by bubbles.

This leak testing equipment includes the necessary sealing

pistons, controls_ manifolds and indicators.
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MANUFACTURER :

OPERATING PRINCIPLE :

MODEL NO. &

TRADE NAME :

E XC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

MAINTENANCE :

SIZE :

WE IGHT:

PORTAB IL ITY:

PRICE :

DELIVERY TIME :

REMARKS :

Moak Machine and Foundry Company

Pressure Change - Gas

Model M24

Air (60 psi)

Gas pressure decrease

Depends upon size of part being tested

Normal maintenance as for any mechanical equipment

Depends upon size of part being tested

Varies again upon part being tested

Usually not portable

Varies with each part being tested

Depends upon how much design is needed

Leak detection systems are designed and fabricated

for specific components in production lines; for

example_ auto engine blocks. Pneumatic pressure is

applied to the sealed cavity and air pressure is

monitored to determine the presence of leaks.

This leak testing equipment includes the necessary

sealing pistons_ controls_ manifolds and indicators.

It is necessary to use some type of rust inhibitor

in the water so that the part being tested will not

rust. This inhibitor must be clear in color.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

MAINTENANCE :

SI:_.:

WEIGHT:

PORTABILITY:

PRICE :

DELIVERY TIME :

REMARKS:

Moak Machine and Foundry Company

Pressure - Wa£er

M8

Hydraulic system (60 psi)

Water leakage

Depends upon size of part being tested

Normal maintenance as for any mechanical equipment

Depends upon size of part being tested

Varies again upon part being tested

Usually not portable

Varies with each part being tested

Depends upon how much design is needed

Leak detection systems are designed and fabricated

for specific components in production lines; for

example_ auto engine blocks.

The above equipment provides pneumatically or hydraulically

driven cylinders which seal off openings in a part to be

leak tested. Tests are conducted by applying high pressure

water to the sealed inner cavity. Leaks are indicated by

water penetration of part being tested.

This leak testing equipment includes the necessary sealing

pistons 3 controls 3 manifolds and indicators.

It is necessary to use some type of rust inhibitor in the

water so that the part being tested will not rust. This
inhibitor must be clear in color.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Modern Engineering Company, Inc.

Halide Torch - Flame Color

Halides

Stock 3081; "Jiffy"

Color change in flame

2 1/2" diameter x 6" long

i0 oz.

Yes

I0 years

$9.25

Stock

This is a conventional air-acetylene operated

leak detector for use on halide and refrigerant gas

leaks.

--io
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIF-C-TY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPb_ SIGNAL

IMPEDANCE

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECT:

DOES IT FAIL SAFE:

.MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

National Research Corporation (Equipment Division)

subsidiary of Norton Company

Mass Spectrometer

Helium; adjustable for hydrogen

N'RC 925-20 Portable Direct-Coupled

ii ranges: I0 x 10-5 to i0 x I0 "I0 std. co/see, full scale

i0"II5 x std. co/see, helium (slightly under 2 x i0"II

std. cc/sec air equivalent)

l15v_ 60 Hz input power = lO00w

0-20 microamperes/2500 ohms taut band panel meter

+2% full scale for given input signal

63% of change in I second

90-130v (constant voltage transformer built in)

55 - ll0°F

Yes
h_

Cleaning of (auxiliary 3 if used) cold trap every week

cleaning of discharge gauge liner every 2 to 4 weeks

Indefinitely long, allowing for replacement of parts

subject to wear or failure

Three pieces_ less than 2 cubic feet total volume

50 ibs.

Table or shelf mounted near vacuum system to be tested.

Spectrometer tube mounts on system to be tested.

3 years

$2_ 560

2 - 3 weeks

Audible alarm included but can be _mitted. ion source

is single piece with two filaments built in. lon source

is low cost and disposable. Standard accessories include:

portable vacuum system - isolated valve -- cold trap

standard leak - helium Jet probe

Unique dlrect-coupled spectrometer tube attaches to high

vacuum chambers like an ionization gauge 3 for fast response
and recovery.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADE AME :

RANGE S :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

National Research Corporation (Equipment Division)

subsidiary of Norton Company

Mass Spectrometer

Helium; adjustable for hydrogen

NRC 925 "Manumatic" (R)

ii ranges: i0 x 10-5 to I0 x i0"I0 std. cc/sec.

full scale

i0-Ii 10 "12I x std. cc/sec, helium (slightly under 4 x

std. cc/sec, air equivalent)

llbv, 60 Hz Input power = 2200w

0-20 microamperes/2500 ohms taut band panel meter

-+2% full scale for given input signal

63% of change in I second

90-130v (constant voltage transformer built in)

55 - llO°F

Yes

Cleaning of cold trap recommended weekly, cleaning

of discharge gauge liner every 2 to 4 weeks

Indefinitely long_ allowing for replacement of

parts subject to wear or failure

40" W x 25" D x 35 1/2" to work surface

48" overall height

600 Ibs,

Mounted on 4" rubber casters

3 years

$6, 190

2 weeks

Audible alarm included_ but can be omitted.

is single piece with two filaments built in.

is low cost and disposable.

bell Jar

base plate

helium Jet probe
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT :

P ORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS:

National Research Corporation (Equipment Division)

subsidiary of Norton Company

Mass Spectrometer

Helium; adjustable for hydrogen

NRC 925 VFT (Very Fast Test) Production Leak Detector

ii ranges: 10 x 10 -5 to 10 x i0-I0 std. cc/sec, full scale

Basic 1 x I0 "II std. cc/sec helium (slightly under

4 x 10-12 std. cc/sec, air equivalent)

Operating: 1 x 10 -9 std. cc/sec, helium

llbv, 60 Hz Input power = 2300w

Red "reject" lamp

0-20 microamperes/2500 ohms taut band panel meter

±2% full scale for given input signal

63% of change in 1 second

90-130v (constant voltage transformer built in) 55 - ll0°F

Yes

Cleaning of cold trap recommended weekly, cleaning of

discharge gauge liner every 2 to 4 weeks

Indefinitely long, allowing for replacement of parts subject
to wear or failure

52" W x 25" D x 35 1/2" to work surface - 48" overall height

650 Ibs.

Mounted on 4" rubber casters; floor mounted auxiliary pump

2 years

$93000 approximately - depends on work fixtures

3 weeks

Side mounted standard test port for conventional operation

as desired. Ion source is single piece with two filmments

built in. Ion source is low_cost and disposable. Standard

accessories for side test port:

bell jar base plate helium jet probe

port adapter kit standard leak

Test enclosures: (flat packs, T05, etc.);

test headers.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Newark Controls Company

Gas Density (A gas density switch - density remains

constant while pressure changes with temperature.)

Designed specifically for gases, vapors, and vapor-

liquid atmospheres.

Gas Density Switches - Nos. RM76, SN88, SN98_ SN129

Vary with type switch used

Varies with type switch used

Opens and closes switch

Less than .001 second

Switch and gas being sensed must be at same temperature.

Temperature range varies with type of switch used

(-85OF to +200OF being typical value). Units to +40OF.

Yes

Throw away and replace

3 to 5 years

Approximately i" diameter x 2" long

2 oz. or less

Can be hand carried

6 years

$60 to $200

4 to 8 weeks

When the molecular density of a gas sealed in a chamber

being monitored drops below a critical value this unit

causes a switch to operate. It responds to gas density

change in sealed containers over a specified temperature

range. Temperature compensation is achieved by a trapped

volume in a reference bellows.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

PORTAB ILITY:

REMARKS :

Nuclear Products Company (NUPRO Co.)

Bubble (Liquid Applicant)

"Snoop" and "Real Cool Snoop"

Bubble

Operating temperature range "SNOOP" + 27°F to 200°F

"REAL COOL SNOOP" - 65°F to 200°F

(-65°F to +35°F with oxygen)

Depends on usage

Dispenser can be hand carried

Tradename "SNOOP". Non-toxic, no residue, dries clean,
detects leaks on vertical surfaces. Meets MIL-L-25567A

(ASG) Type 1.

Trade name "REAL COOL SNOOP", has wider operating

temperature range. Low degree of toxicity. Dries
clean. Is non-flammaBle in liquid state. Meets

MIL-L-25667A (ASG) Type II specs.

Applicants detect leaks in pressurized systems.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

SIZE:

WEIGHT:

PRICE :

Perkin-Elmer Corporation - Ultek Division

Mass Spectrometer - Quadrupole

I - 150 AMU

Quad #150

One

5 x 10"14 tort for N 2.

105 - 125v, 50 - 60 Hz.

Indicating instrument on front panel. Output at

Electron Multiplier: 20 amps/torr.

130 milliseconds scal mass range

Electronics: 8 3/4" x 19" rack mount

(cabinet available)

Sensing elements in shipping container - 35 ibs.

Electronics: shipping weight - 175 ibs.

$7950
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SE NS IT IV ITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME :

S IZE :

WE IGHT:

PRICE :

Perkin-Elmer Corporation - Ultek Division

Mass Spectrometer - Quadropole

I 500 AMU

Quad #250

Three ranges (i-50; 10-150; 50-500 AMU)

10-15
tort for N 2

l17v, 60 Hz, 6 amps

Designed for use with oscilloscope, strip chart or

x-y recorder, i00 amps/torr for N 2.

500 microseconds

22 1/2" x 59 3/4" x 25 1/2"

Shipping weight: 470 Ibs.

$13,700 (readout equipment extra).
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO.&
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Perkin-Elmer Corporation - Ultek Division

ion Gauge,Accessory - Is a current amplifier - tracer
gas admitted through leak alters magnitude of ion gauge
current. This current is amplified and monitored.

None. AnY2convenientbottled gas such as helium, argon,oxygen, CO, etc. can be used as probe gas.

#60-412

One

I% of the pumped gas pressure.

l15v, 60 Hz, 10we

_isual indication on panel meter 0-220 mv dc for full

scale meter reading.

Good

As fast as 1/2 second.

105 to 125 volts, 50 ° to 100°F performs within

stated specifications.

Yes

In consistent everyday use, replace mercury battery

each 3 months. Occasional vacuum tube replacement.

5 years

13 1/4" x 7 3/8" x 4"

8 1/2 Ibs.

Can be hand carried

5 years

$380

Stock item

Requires equipment for measuring pressure such as ion gauge

or ion pump systems.

The leak detector amplifies the effects of small pressure or

gauge sensitivity changes. Oxygen and argon found to give

largest and most rapid response for ion pumped systems steady

state pressure is cancelled so that any subsequent change in

the reading is readily detectable.
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MANUFACTIBIER :

OPERATING PRINCIPLE :

SPE CIFICITY:

MODEL NO. &

TRADENAME :

RANGE S:

SENSITIVITY:

EXCITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME:

ENVlRONME_ EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Phoenix Precision Instrument Co., Inc.

Particle Detector - (Detects airborne particulates

by measurement of forward scattered light.)

None. Response proportional to total concentration

of airborne particulates.

Model JM-2000 Sinclair-Phoenix Aerosol Photometer

i00 to 0.001 micrograms/liter of 0.3 micron

diameter particles.

Dependent on sample concentration due to logarithmic

response.

ll5v 3 60 Hz_ 2 amps - not including vacuum pump

Panel instrument. Output for recorder (bmv dc).

50 ohms output impedance.

i second

Sensitivity adversely affected by excessively

high humidity and temperature.

No

3 months

Indefinite

21" x Ii" x 15"

90 ibs.

Moveable from station to station on rolling lab cart.

13 years

$2213

4 weeks

Described in tentative Test Method by ASTM Committee

F-7, sub X; also Sandia Corp. Technical memorandum

SC-TM-64-637. Aids in compliance with Fed. Std.#209.

Unit is useful in detecting leaks in clean-room filter seals°

Also available: Model JM-3000-AL Aerosol Photometer 3

having linear response with approximately 2 orders

of magnitude greater sensitivity ....
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

WEIGHT:

PORTABiL ITY:

PRICE:

DELIVERYTIME:

REMARKS:

Joseph G. Pollard Company, Inc.

Sonic - Sonic Range

None

P30 Sonoscope

None required

Audio - earpiece

5 ounces

Ye s

$6.50

7 days ARO

Unit is an adaptation of a telephone earphone. It contains

a tuning rod which protrudes on one end and vibrates on

contact with a leaking pipe or system. The other end of

the rod terminates at a metal diaphragm which generates

sound from the rod vibration.

.-_o

°
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

MAINTENANCE :

SIZE :

WEIGHT :

PORTABILITY:

TIME ON MARKET:

PRICE :

REMARKS :

Joseph G. Pollard Company_ Inc.

Sonic - Sonic Range

None

LT-10

30 to I0,000 Hz.

9 volts - Internal Battery

Earphones

Replace battery after 300 hours of use

7" x ii" x 3 1/4"

4 1/2 Ibs.

Yes

I year

$199.50

Sound generated by liquid leaking from pressurized system

is detecte_ amplified and tuned to leak frequency.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGE S :

SENSITrqlTY:

EXCITATION:

OUTPUT SIGNAL

LMPEDANCE :

REPEATABILITY:

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE:

WE IGHT :

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Quantum Dynamics, Incorporated

Flow

Models LST-4 and LBT-2

0. I to I0,000 std. cc/min.

0.02 std. cc/mln* maximum

llSv, 60 Hz or 24v dc

Digital - can use counter

0.1% of full scale

Designed for 50 to 120°F ambient

i0 years

Single channel: 6" x 6" x 12"

Multl-range unit: 24" x 24" x 84"

5 to 300 Ibs.

Small units are portable

2 years

Single channel unit: $800

Large system, to $9500

90 days

Large systems can be used for long term tests

(days-weeks), for very low leak rates. Various

adaptations are available. Instruments and systems

can be custom designed for specific applications.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

SIZE :

WE IGHT:

PORTAB IL ITY:

REMARKS :

Riken Keiki Fine Instrument Company, Ltd.

Interferometer

Riken Gas Indicator - Type 18

Scale for Methane - 0-I0; 0.5% per division

Vernier scale for methane - 0-I: 0.02% per division

Single flashlight battery

Panel meter

Designed for use in -30°C to +45°C ambient.

7 1/2" x 3 1/2" x 2 I/2"

3 1/2 Ibs.

Is hand carried

Refractive index of the test gas is compared to that of

air. Unit is useful for measuring the concentration of

any gas in air. Unwanted gases must _irst be filtered

out by absorbers.
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MAN-JFACTURER:

OPERATLNGPRINCIPLE:

SPECIFICIT%":

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTI_ITSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAlL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERY TIME :

Rfken Keiki Fine Instrument Company, Ltd.

Catalytic CG_mbustion

All combustible gases can be detected

Riken Gas Auto-Alarm-Type GPI20

All combustible gas: LEL 0 - 100% (0-1.8 vol % for C4HI0)

1% of LEL can be detected

100v 50/6O Hz

Panel meter and acoustic and lamp alarm (Ima into 60 ohms)

±5% full scale

90% in i0 sec.

Design for use at 80 to 120vj 0° to 40°C, and

performs within stated repeatability.

No

Check span every three months

Sensor one year, Instrument proper 5 years.

Power units: 4" x 8" x 8 1/4"

Indicator (for one measuring point) 4" x 8" x 8 1/4"

Detector heads (for one measuring point): 4 1/2" x 5 1/2" x 7"

ii ibs. (in the case of one measuring point)

Stationary type

5 years

FOB Japan (US $360) - (in case of i measuring point)

Within one mo=th
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS:

Riken Keiki Fine Instrument Companyj Ltd.

Catalytic Combustion

All combustible gases can be detected

Riken Combustible Gas Detector/Alarm-Type GP205

All combustible gas: LEL 0-100% (0 - 1.8 vol %

for C4HI0)

1% of LEL can be detected

4 standard flashlight cells.

Panel meter and acoustic and lamp alarm (ima into 60 ohms)

±5% full scale

90% in 5 sec.

At 2.2 to 3v3 0° to 40°C; performs within stated

repeatability.

Check span every three months_ battery replacement

every 200 measurements.

Sensor one year, instrument proper 5 years.

5 1/2" x 6 3/4" x 3 1/2 "

5 1/2 Ibs.

Portable (supported by neck strap during use)

3 years

F.O.B. Japan (US $75)

Prompt

There is also a model GP-204 which does not have an

alarm and uses fewer batteries.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME:

RANGES:

SENS IT IV ITY:

EXC ITAT ION:

OUTPUT SIGNAL

EMPEDANCE :

RESPONSE TIME:

ENVIRONMENT EFFECTS :

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

REMARKS :

Ruska Instrument Corporation

Gas Pressure Change -Gas (_used Quartz Bourdon Tube)

Series 38

0-2 psi through 0-i000 psi. Other ranges available

on request.

Resolution (i0,000 counts) - 0.01% full scale

llOv 3 60 Hz (llva to llOva depending on model)

Digital counter (built-ln)

Slew rate: manual - 40 seconds full scale

motorized and servo - 20 seconds full scale

Operational temperature: 32° - 100°F
0°Storage temperature: - 120°F

Standard and motorized 14 1/2" x 8 1/2" x i0 1/2"

Standard - 22 Ibs.; motorized - 23 Ibs.; servo - 30 Ibs.

Yes

Units with ranges of 200 psi or less:

Model 3823 - $1245

Model 3825 - $1690

Model 3833 - $1315

Model 3820 - standard

Model 3823 - motorized

Model 3825 - servo-matic

Model 3830 - standard power pack )

Model 3833 - motorized power pack )
rechargeable battery
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

ENVIRONMENT EFFECTS:

MAINTENANCE :

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

DELIVERY TIME:

REMARKS:

Salen & Wicander, AB

Catalytic Combustion (Combustion with photocell

monitoring of filament)

Combustible gases and vapors.

KVC - 5/pli15

0-100% LEL of the gas concentration

10% LEL

Battery with built-in llSv_ 60 Hz.

Trickle charger.

Audible and visual

Temperature: 0 to 125°F

Pressure: atmospheric

Recharge batteries every 6 hours (4 hours if pump

is worked continuously).

6" x 8" x i0"

17 pounds

Can be hand carried

$580

Stock item

Audible and visual alarms adjustable from i0 to 100% LEL.

Used to indicate % of LEL of flammable vapors in air.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCI TATION•

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Salen & Wicander AB

Catalytic combustion

Combustible gases and vapors, chlorine and freon

"Salwico" type KVC-5_KVC-50

0 - 100%LEL of the gas concentration

2% LEL

115 or 240v, 60 or 50 Hz 400w

Panel meter (I ma into 700 ohms)

+5% full scale

100% change in 2 sec.

Designed for I00 to 130 or 215 to 260v at 0 ° to 125°F

and atmospheric pressure

No

Check zero and span monthly. No specific servicing
interval.

I0 years

Both portable and fixed mounted models are

available for multi channel systems.

I0 years

$500 to $I0,000

4 weeks

Audible and visual alarm adjustable from 2% to I00_

LEL.

--io
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MANUFACTURE R:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPE DANCE :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB !L ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Schneider Manufacturing Company

Sonic - Sonic Range

No. It is an underground water and steam leak locator.

Globe Geophone

Stethoscope headpiece

Normal atmospheric humidity and temperature has no
effect on operation.

No

Instruments now in for repair have been out for

10-16 years and after repair (about $28.00) will last

for another 10-16 years.

(See above)

Carried in a wooden case 4" x i0" x 12"

12 ibs.

Hand carried

Since 1918 - 50 years

$105.00

Same day order is received

Geophone is non-electrical, rugged, sensitive and

easily carried. Used to locate underground water
and steam leaks.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

LIFE EXPECTANCY:

SIZE:

WE IGHT :

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Shannon Luminous Materials Company, Tracer-Tech Division

Chemical indicators - Dye (Fluorescent System, Fluorescent

Tracer Concentrates). Dilutes in any solvent except water.

(Water tracers available).

Non-specific, detects any leakage-path through which a

liquid can be transported.

T-IO0/0S-31 (green) T-IO0/0S-80 (blue-white).

Fluorescent Concentrates - "Tracer-Tech."

Sensitivity adjustable, according to dilution.

Flaws as small as 75 millimicrons can be detected.

Sensitivity may be increased to about I0 millimicrons or

less by a development technique.

Black light lamps operate on l15v, 60 Hz, 4 to lOOw.

(50 Hz and high power up to 3 kw available).

Visual inspection of fluorescent leak indications

(photocell readout available).

± 5% in statistical count of defects.

Average penetration dwell time i0 minutes.

(Depends on length of leakage path).

Recommended use temperature above 40°F._ to

maximum of 200°F_

i0 years (plus).

Supplied in pint bottles of concentrate (Spray

cans available - 12 oz. spray cans, 8 per kit).

Approximately 1 lb./pint - Kit weights about 16 Ibs.

Kits can be hand carried.

i0 years

Spray can kit $30.50. Pint bottles $8.00.

Ultraviolet lamps $14.50 to $95.00.

Stock - immediate shipment.

Qualifies under pertinent portions of MIL-I-25135C.

Several different types of kits are available.

Modifications are available to meet specific requirements

of liquid systems, sensitivity, etc. Calibration

instrumentation is available. Patented.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENS ITIVITY :

OUTPLrr SiGNAL

IMPEDANCE :

RE FEATABIL ITY:

RESPONSE TLME:

ENVIRONMENT EFFECTS:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Shannon Luminous Materials Company, Tracer-Tech Division

Chemical Indicator - Dye Indicator shows color change as

result of shift in pH due to absorption of amine vapors.

Specific to amine gases, an_nonia, diethylene triamine,

ethylenediamine, and similar liquids and vapors.

T-621 Gas-Phase System "Tracer-Tech"

-7
Estimate - leaks down to 1 x i0 std. cc/sec, can be detected.

Visual inspection of color change from pale blue to

bright red in locality of leak.

Good. Presence of Ketone vapors and electro-

chemical effects of metals may interfere.

Average time is a few seconds to reach equilibrium

of indications.

Recommended use temperature between 60°F to 80°F.

Elevated temperatures may accelerate electrochemical

interference effects.

I0 years

Supplied in pint bottles (complete kits include

accessory materials, barrier film-former, protective

film-former, cleaners, vapor source).

Kit weights approximately 16 ibs.

Kits can be hand carried.

5 years

T-621 Indicator $20.00 per pint.

Complete Kit - $60.00

Stock - three days.

Low volatility vapor sources are supplied which have

less hazard than ammonia gas. The system has the

capability of locating leakage points on the inside

of a pressurized chamber, as in a honeycomb fuel tank.

Patented.
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MANUFACTURER:

OPERATING PRINCIPLE:

MODEL NO. &

TRADENAME:

RANGES :

SENSITIVITY:

EXCITATION:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS :

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Sherwin Incorporated

Chemical Indicator - Fluorescent Dye

Tradename is "Dubl-Chek" - Fluorescent Dye Penetrant

Nonwater-washable and water-washable

Fraction micron

(Capillary Attraction)

Good

Penetrant dwell-tlme 15 minutes; developing time 5 minutes

Penetrants should be used above 60°F. Surfaces and flaws

must be free of moisture and soil.

Bulk materials check for brightness periodically.

Indefinite

Spray cans (12 oz.) and bulk - 1/5/55 gallon containers.

30 ibs. Kit w/black light

Portable but requires electric source for black light

4 years

$150 with black light

Two weeks

Fluorescent Dye Penetrant (Liquid charged w/fluorescent

dye 3 penetrates defects and exposes as glowing mark

under black light)

Qualified under MIL-I-25135C(ASG) and MIL-I-6866B.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME"

RANGES :

SENSITIVITY:

EXC ITAT ION:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Sherwin Incorporated

Chemical Indicator - Dye

Tradename is "DUBL-CHEK" - Dye Penetrant

Nonwater-washable and Water-washable

Fraction micron

(Capillary Attraction)

Good

Penetrant dwell-time 15 minutes; developing time 5 minutes

Penetrants should be used above 60°F. Surfaces and flaws

must be free of moisture and soil.

Indefinite

Spray cans (12 oz.) and bulk - 1/5/55 gallon containers

Kit (3 spray cans) weighs 5 ibs.

Completely portable

4 years

$13.95 for Kit of 3 spray cans

Immediate

Visible Dye Penetrant_ a red llquid_ penetrates defects

and shows them as a red mark on white developer.

Qualified under MIL-I-25135C(ASG); MIL-I-6866B; and

NAVSHIPS 250-1500-1
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MAN"jFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE T_ME :

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

J. & S. Sieger, Ltd. (Pools-Dorset-England)

Agent: Smith-Jesse_ Incorporated

Catalytic Combustion

All explosive Mases except acetylene, and vapors

containing sulfur compounds which will poison

detector element.

Sieger ME7 Series I

20-25% to 100% LEL

Ii0-250v, 50/60 Hz or 12v dc via power converter

Panel meter and 5 amp_ 250v alarm relay

±2%

i to i0 seconds

Humidity or pressure does not affect reading.

Designed for use in 30°F to 130°F ambient

Yes

Check monthly

Indefinite with normal servicing

6 Ibs.

Yes

20 years

From $220 up

3 - 4 weeks

Also have Model P_ Portable Battery Powered Unit.

Features meter readout, any super-sensititive

and standard 0-100% of LEL readout.

From $170 up.

30-177



MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

SENS IT IV ITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

DOES IT FAIL SAFE:

SIZE :

WEIGHT:

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

Sierra Engineering Company - Materials Research Division

Tracer - Radioactive. _ermetically sealed components

are placed into a chamber which is then pressurized with

a Radio-tracer (Kr 85 & Nitrogen) for a specific time

and pressure. Components are then removed and tested

for radioactive gas penetration_

Krypton-85 (Krypton-85 and Nitrogen mixture)

Radioflo Model 44-462

i x I0 -II std. cc/sec.

llSv_ 25 amps, 60 Hz (50 Hz available)

Scintillation Crystal Counting Station

Yes

56 1/4" x 54 7/8" x 44"

Complete system: 3640 Ibs. (5 gallon Activation Tank)

No

12 years

Price on request
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IIA_FACTURER:

OPERATINGPRINCIPLE•

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

DOESIT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB lL ITY:

TLME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS:

Sloan Instruments Corporation

Mass Spectrometer (partial pressure)

Any between 2 to 50 Mass

Model R.G.A.

Masses 2 to 50

i0-I0Partial pressures to 3 x torr (I00 ppm)

llTv 3 50-60 Hz

Recorder output 0 to 100my

Yes

Periodic tube element bake-out

Dependent on gas being used for leak detection

7" x 9 1/2" x i0 1/2"

12 ibs (without magnet)

Yes - tube and magnet only can be installed in system

R.G.A. moved anywhere

Three years

R.G.A. $2400 Tube $265 Magnet $300

30 days

The Sloan R.G.A. is capable of measuring partial

pressures to 3 x i0 "I0 torr over 2 mass range of 2

to 50. Can automatically sweep i0 mass numbers/minute

or be set to scan for one gas only for leak detection

or monitoring doping gases etc. Long term stability

allows one peak observation for hours or even days.

Signal can be generated when pressures exceed set

limits.

30-179



MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

SENS ITIV ITY:

EXCITATION:

SIZE :

WE IGHT :

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Spectronics Corporation (Black Light Eastern Division)

Chemical Indicators - Dye (Fluorescent)

Black light sources and additives to fluids in systems.

Depends on additive and ambient light.

90v dc to llOv ac for lamp

6" x 6" x 12"

i0 Ibs.

ii years

$22.50 and up

I week

Various models available. Dye is added to fluid.

Used for detection of leaks in condensers, reactors, etc.
Small traces of additives can be detected when leaks occur.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

LIFE EXPECTANCY:

S IZE :

WEIGHT :

PORTAB IL ITY:

PRICE :

Sprague Devices, Incorporated

Bubble (Liquid Applicant)

"Air Push" Leak Detector

Visual (bubbles)

Within 5 seconds

2 years, minimum

4 oz. bottle - i pint - 1 gallon

7 OZ.

Yes

4 oz. $i.00; I pint - $2.35; 1 gallon - $15.00

Pi-

30-181



MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Starr-Kap Engineering Company

Pressure Change - Liquid

Liquid appropriate to system

SKEC 1-200-TAR "Leak Check" Line Unit for Production Line

Standard Working Pressure 0 to 2000 psi

2000 to 15,000 psi - special application

0.015 cc/min at 2,000 psi system pressure

I00 psi air pressure normal

*Visual readout to gauge

Absolute

Immediate

No effect

Yes, unit is self testing

Minimum, depending on usage

Indefinite

20" x 15" x 13"

70 ibs. approximate

For production line use

i0 years

$1,750 and up

3 to 4 weeks

*Automatic readout available; ticket printer also

available. Readout is taken on a differential pressure

gage. Measurement indicates pressure difference between

a pressurized liquid system and the system being tested.

Diaphragm seal is used between hydraulic and air system.

Built-in intensifier increases shop line air pressure to
desired value.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADE NAME :

RANGES :

SENS IT IVlTY:

EXC ITAT ION :

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE TIME :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

S IZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Starr-Kap Engineering Company

Pressure Change - Liquid

Liquid appropriate to system

SKEC 2-200-TAR "Leak Check" Portable Model on wheels

Standard Working Pressure: 0 to 2000 psi

2000 to 15,000 psi - special application

0.015 cc/min at 2_000 psi system pressure

i00 psi air pressure normal

*Visual readout to gauge

Absolute

Immediate

Yes 3 unit is self testing

Minimum, depending on usage

Indefinite

22" x 42" x 20"

200 ibs. approximate

For repair or laboratory use

i0 years

$2,750 and up

3 to 4 weeks

*Automatic readout available; ticket printer

also available.

Similar to Model SKEC-I-200 TAR_ except can

be wheeled to test site, and has tank of

hydraulic fluid to fill the system being tested.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENS IT IVITY:

EXC ITAT ION:

OUTPUT SIGNAL

RESPONSE TIME :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Starr-Kap Engineering Company

Pressure Change - Gas

Gas

LC 10234 "Air Check"

0 to 500 psi

Has capacity of detecting beyond one bubble in
five seconds or less.

I00 psi air pressure, depending on application

*Visual readout on gauge

Immediate. Time duration of test: 15 sec. to fill,

15 sec. to temperature stabilize, i0 sec. to test,

5 sec. to dump.

Yes, unit is self testing

Minimum, depending on usage

Indefinite

18 1/2" x 30" x I0" (with air intensifier to 500 psi)

175 ibs. approximate (with air intensifier to 500 psi)

For production or laboratory use

5 years

$1,400 and up

3 to 4 weeks

*Automatic readout available also; ticket printer also

available.

Built-in air intensifier is used to raise test pressure

above shop line pressure.

Primarily for production testin_ of systems.
Typical system volume is 250 in _.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Superior Signal Company_ Incorporated

Tracer - Smoke. Smoke is generated by chemical

reaction in a cartridge type bomb.

Superior Smoke Candles and Superior Smoke Bombs

None required. Flame manually applied to fuse.

Visual observation and odor of escaping smoke through leak

Approximately 5 minutes

Should be stored below 65% humidity and 85°F

Yes

18 months

Four sizes from 1/2" x 1 3/8" OD to 14" x 1 3/8" OD

with burning time of 30 seconds3 60 seconds_ three

minutes or five minutes

1 i/2 oz. to i lb. each

Yes

14 years

$4.50 to $25.80 per dozen

2 weeks

After the smoke device is starte_ a blower injects the non-

toxic smoke into the system to be leak tested. Smoke will

be observed escaping from leaks. This method can be used

on large systems such as sewer lines. On smaller systems

a blower may not be necessary and merely insertion of the

smoke device is sufficient. Smoke volume normally should

be sufficient to fill an area 5 or 6 times that of the test

system. Various types of smoke devices available. Smoke

will not stain clothing nor corrode metal.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSiTIV ITY:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

DOESIT FAIL SAFE:

MAINTENANCE:

LIr-E EXPECTANCY:
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PORTABIL ITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Technicon Inc.

Chemical Indicater - Reagent

Specific for SO., NO, NO2, formaldehyde, agone_
armmonia,cyanide, acroleln, H2S

Auto Analyzer

Variable from ppmupwards

1 ppm

0-10my

± 1.0%relative

3 - 5 minutes

Yes

i week

5 - i0 years

3 x 2 x 2 ft. cabinet

70 Ibs.

Yes

New

$5,000

90 days

A gas sample is selectively scrubbed, as programmed,
for one specific constituent at a time. The liquid
concentrate for each analysis is delivered to a
colorimeter for quantitative analysis. The colorimeter
output is normally shownon a recorder chart.

°.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIV!TY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOESIT FAIL SAFE:
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WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:

DELIVERYTIME:

REMARKS:

Technology/Versatronics_ Inc.

Flow

Gases

"L!NO?_ASS"MassFlowmeter

0.16 std. cc/sec, air_ through 50 ibs.min.

0.01 std. cc/sec, air

llSvj 60 Hz or 28v dc

Panel Meter also 5v dc

_+0.1%of reading

70 ms for full step changeat 10%of flow rate

+2%full scale accuracy specified over
m

_25°F temperature span and pressure range of _i atm.

No

Check zero and span every 6 months

No specific servicing interval

I0 yrs.

4.53" long 1.37" in diameter

8 oz.

Due to light weight and small size easily portable.

6 years

$1500 thru $2500

4 weeks

A self-heated thermistor placed in the gas flow

path 3 senses mass flow rate. A second thermistor

which is not in the flow path but held at the flow

stream temperature_ serves to compensate for

temperature variations.

Modifications are available to conform with

customer's requirements.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:
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MAINTENANCE:

LIFE EXPECTANCY:
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WEIGHT:

PORTABILITY:

TIMEONMARKET:

PRICE:
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Technology/Versatronics_ Inc.

Electrochemical Cell

Oxygen

p 0160

0 to 10%, 0 to 21%,0 to 40%, or anywherebetween
0 to 75 mmHgand 0 to 320 mmHg.

30 mv/n_mon Model p 0160L; 6 mv/mmon Model p OI60B

Line operated l15v, 50-60 Hzj 0.3 amps.
Battery operated 4 mallory RMI2Rcurrent 1.3 ma.

Fanel Instrument with 10v dc on p 0160L (ac unit) and
1.5v dc on p 0160B (battery unit).

± 0.1% of reading

5 seconds

± 1%of full scale accuracy specified over temperature
range of 32°F to 120°F and ± lOv ac variation.

No

Recharge oxygen probe every 30 to 90 days.

5 years

5" x 9.5" x 6"

5 ibs.

Yes

1 1/2 years

$480 for p 0160L; $490 for p OI60B price includes

electrode.

Off the shelf
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Techsonics, Inc.

Sonic - Ultrasonic Range

None; depends on sound of leak

II0, IIOM_ 112 "Son-Tector"

Can detect 0.003" diameter hole at 25 psi at

25 feet (air)

9 volt transistor radio battery

Speaker_ 8 ohm headset 3 meter movement

±5% of meter reading

0 to 50°C

Periodic battery replacement (100-150 hours)

5 - i0 years

6 1/4" x 4 1/4" x 1 1/2"

15 oz. base unit, 5 pounds including case and all

accessories.

Normally hand carried or clipped to belt.

4 1/2 years

$144.50 to $245.50 depending on accessories

Stock

Also available: Pole Mounting Amplifier for use

in hazardous locations - complete high voltage isolation.

Useful for locating leaks in gas and liquid pressure

and in vacuum systems.
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Techsonics, Inc.

Sonic - Ultrasonic Range

None; depends on sound of leak

i00_ I01 "Son-Tector"

Can detect .003" diameter hole at 25 psi at 25 feet (air)

9 volt transistor radio battery

8 ohm headphone

0 to 50°C

Periodic battery replacement (150-200 hours)

5-10 years

Pistol shape - 6" x 8"

2 pounds

Hand held

4 1/2 years

$144.50 to $168.00 depending on accessories

Stock

Used to find leaks in both pressure and vacuum systems.
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Tel Air Products Corp.

Sonic-Ultrasonic Range (converted to audible signal)

Tel-A-Leak Model TA 700

Detects holes 0.0015" in diameter and larger.

9 v internal battery

Audible signal (headphones)

No

(Servicing interval) 500 hours (low drain solid state

circuitry)

Approximately 4" x 6" x 2"

Yes

This unit is designed to locate pressurized cable

leaks at a distance.
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Teledyne, Inc. (Analytical Instruments Division)

Ultraviolet (Absorption of ultraviolet and/or

visible radiation)

Selectivity can be achieved by selection of specific
light sources and filter elements.

Series 600

Trace or Percent

± I% of full scale

l15v, 60 Hz_ 160w.

0-5 mv dc

Within 1% of full scale in 24 hours.

For most applications, 90% response obtained in
5 to 30 seconds.

Ambient temperature: 40 to ii0 degrees F.

No

Not portable

Depends upon application.

Noise level: less than 0.25% for most applications; up

to 2% on highly sensitive applications. Pump requirements:

gas flow of 30 to 60 cubic inches per minute. Optional

accessories available include: recorder, alarm contacts,

multiple sampling systems, calibration samples, etc.

Numerous standard modifications can be made to enable unit

to handle a wide variety of applications.
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Teledyne, Inc. (Analytical Instruments Division)

Thermal Conductivity - preceeded by chromatographic

columns fer gas separation.

Can be made specific in many applications.

Model 850

Percent only

Depends on the thermal conductivity of carrier gas

versus component measured. Typically is 1/2% full scale.

l15v, 60 Hz, 200w

0-5 mv dc

± 1/2% of scale

Ambient temperature 40-100°F

Analysis Unit: 15 x 15 x 19
Control Unit: 17 1/2 x 6 x 12

Approximately ii0 ibs.

No

$3200 plus options

8 - I0 weeks

A one to four component thermal conductivity analyzer

that utilizes a separation system to give specific

information relating to the components of interest in

a complex gas composition. The analyzer is actually

a system_ composed of a minimum of three non-explosion

proof sections (analysis and control sections, and
recorder).
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Teledyne_ Inc. (Analytical Instruments Division)

Flame lonization

Hydrocarbons

Series 400

Triple Range Attenuator

As low as 0-2 ppm Methane equivalent

l15v, 60 Hz

Linear signal. Meter readout and 0-5 mv dc. Other

outputs available.

Flame response is instantaneous.

Model 403 for analysis of samples with dew points below

125°F and Model 404 with dew points up to 175°F.

Yes

Replacement of support gases

Approximately 16" x 17" x 9" (slightly larger for other

models).

Portable and panel models offered.

Approximately 3 years

Standard Model - $2450.00

8 - i0 weeks

The analyzers are continuous monitoring devices designed

to measure trace quantities of total hydrocarbon contaminants

in a gaseous atmosphere. The principle of operation is based

on measuring the ion current generated when organic compounds

are burned in a hydrogen flame. The signal is linear over a

range of 0 to I0,000 ppm hydrocarbon.
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Teledyne, Inc. - (Analytical Instruments Division)

Thermal Conductivity

Series 200 Analyzers

Single or multiple, as requested, ppm or percent

Changes of 1/4 to 1/2% of scale detected reliably.

l15v, 60 Hz, l15w.

0-5 my dc standard

Zero drift is less than 1% full scale in 24 hours.

90% response in approximately 50 seconds

No

i0 years

Approximately 15" x 17" x i0"

From 25 to 70 ibs., depending on unit.

No

Approximately i0 years

Dependent upon application requested.

Usually 6 to 8 weeks

Accuracy: ±1% full scale for most binary mixtures.

Typical application: 0-1% hydrogen in air, nitrogen,

or oxygen analyzer.

Optional accessories available include readout

indicators, automatic controls, alarms_ etc.

Sample requirement flow - 5 to 25 cubic inches per

minute.

.

. •

30-195 _-



MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS ITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

S IZE :

WE IGHT:

PORTABILITY:

PRICE :

DELIVERY TIME :

Teledyne, Inc. - (Analytical Instruments Division)

Electrochemical Cell

Oxygen only

306W

2 ppm to 1%

1% full scale

l15v_ 60 Hz

0-5 my dc

90% in 5 sec.

Temperature range 40-120°F.

Cell is not sensitive to barometric pressure.

No

Replacement and service of electrolytical cell.

Depends on cell

16" x 18" x i0"

67 ibs.

Semi

Standard Model $2045.00

2 to 4 weeks
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Teledyne Inc. " (Analytical Instruments Division)

Electrochemical Cell

Oxygen

Series 320

0 - 1% to 0 - 100%

1% full scale

None - detector cell furnishes all power for unit.

Visual reading on meter and 0-5 mv dc

90% in 5 seconds

Operating temperature range 30-125°F

No

Cell replacement annually

Approximately 7 1/2" x II" x 5 i/2"

4 ibs.

Can be hand carried

Approximately 4 years

$525.00 and up.

2 to 4 weeks

Accuracy: 1% of full scale at constant temperature.

5% of full scale throughout the temperature range.

Model 330 is a pocket size unit (8 oz.) without

probe or indicating instrument.
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Catalytic Combustion

Combustible gas and vapor

#i00 Series

Single or multiple ranges are available. 0 to 1%

concentration and greater range.

l15v, 60 Hz (50 Hz on request)

0-5 mv dc, also_ indicating intrument if requested

95% of total change in 30 seconds

Temperature range: 50°F to 100°F.

Voltage: llSv ± 15%, 60 Hz.

15" x 17" x i0"

Sample flow rate of 200 cc/sec, is required.

This analyzer comprises complete sensing equipment.

Optional accessories available include readout

indicators, automatic controls, alarms, sampling
systems, etc.

o
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Teledyne, Inc. (Analytical Instruments Division)

Infrared (Absorption of radiant energy)

Gas selectivity is obtained by separate detectors and

selective infrared beam filtering.

#700 series

Single or multiple as required

indicated by 0-I0 ppm C02, 0-50 ppm CO full scale

ranges°

l15v, 60 HZ, 200w (other frequencies on special order).

Better than 1/2% of full scale

90% of a change in 15 to 30 seconds. Faster response

may be provided for special applications.

Line voltage: 95 to 130v ac.

Ambient temperature: 50°F to 100°F.

Sample requirement: 30 to 200 cubic inches per minute.

Components of detector are selected for optimum response to

the sample component of interest and minimum interference

of other sample components. Among selected detector

components are: filling gases for detector and filter;

sample, filter, and detector cell lengths; the cell window

and rotating shutter materials. Above information is for

series 700 Infrared Analyzer. This analyzer comprises the

complete sensing equipment. Optional accessories available

include recorder, alarm contact, multiple sampling systems,

calibration samples, etc.

Principle use as leak detector is with nitrous oxide tracer

gas useful in detecting: cyanogen, hydrazine, hydrogen

cyanide_ nitric oxide, hydrocarbons, H2S , CO, CO 2.

--io

_. °
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Tenvac, Incorporated

Mass Spectrometer

Helium, Neon 3 Argon

TENVAC-850 Automatic Leak Tester

i, 5, i0_ 50, 1003 5003 i000, 5000 & I0,000

I0 -I0 cc/sec. He and larger leaks

llSv, 60 Hz, 20 amps

Panel Meter & 2 amps at llOv.

0.5% full scale

Less than 1 sec.

Yes

Calibrate and zero daily - no other specific.

5 years

55" x 42" x 32"

500 ibs.

I year

$113500.00

8 weeks

Detects leak rates of 5 x 10-9 atmosphere cc/sec, of helium

in "prebombed" components.

Automatically feeds 3 tests, and accepts or rejects up to 150(i
parts per hour.

Designed for production applications where high rates and
automation are imperative.
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TescomCorporation, Smith Welding Equipment Division

Halide Torch - Flame Color

Non-combustible Halide. Refrigerant gases.

NEISI-17 or NE182-17with NEI80, Handi-Heet Halide Detector

15 ppmto 13000_000ppmin air

15 ppmof halide gas in air

Visual observation of flame color change

Dependson visual detection of operator

2 seconds

Temperature -2° to 120°F

No

Replace reactor element whenconsumed

40 years reactor element, i0 years detector

12" x i"

16 oz.

Can be carried to job by one person

I0 years

$16.00 range

From stock

°_
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Testing Systems, Incorporated

Chemical Indicator - Dye

Leakage of fluorescent penetrant detected by black light.

"Fluoro Finder" FL-50 System

Can detect any straight through leak regardless

of size of opening

ll0v, 50-60 Hz black light (3660a.u.)

Available also at 220v.

Fluorescent glow

Immediate to 30 minutes

No

Indefinite

KL-50 Kit 12 1/4" x 7 7/8" x 3 3/8"

KL-50 Kit 9 Ibs.

Power Packs available to afford complete portability

2 1/2 years

KL-50 Kit $49.00; Penetrant - $45.00/gallon

One week

Variations and modifications are available to conform

with customers requirements.

Power Pack for portable application $198.00.
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Texas Instruments, Incorporated

Pressure change Gas (Fused Quartz Bourdon Tube)

Fused Quartz Precision Pressure Gage Models 144 and
145

0-1.5 to 0-500 psi

0.001% full scale.

Special units with 0.00033% full scale.

105 to 125v 3 50 or 60 Hz, 80w.

Visual (digital readout) and recorder output

0.002% full scale

Slew rate = 2 minutes full scale

Operational temperature range: 0 to 38°C.

Zero stability after warmup - 0.0005% full scale per

degree C ambient temperature change.

Table model - 14 1/8" x I0 i/2" x 15 1/2"

Rack mount model - 19" x 14" x 15"

32 1/2 ibs. table; 41 I/2 ibs. rack

Yes

7 years

Model 144 - $2085. Model 145 - $2680.

Model 145 is a Servo-Nulling Readout Unit.

Model 144 is a Motor Driven Readout Unit with manual

control.

Tubes with special sensitivity ranges or in evacuated

capsules are available on special order.

Gages consist basically of two parts - the interchangeable

capsule containing the fused quartz pressure sensitive
element and the readout unit.

For use in absolute 3 differential or gage applications.

-
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Thermal Industries of Florida, Inc.

Tracer-Halogen (cold cathode plasma emission affected

by minute traces of Halogen gas. When a leak is

approached a loud, penetrating squeal is produced by

the signal generator.)

Halogen Gas

TIF 550 Halogen Leak Detector

Single

Better than 1/2 ounce per year

2 standard type D flashlight batteries in parallel

1.5 volts.

Audible tone

Excellent

Instantaneous

0°F to 120°F - same environment as ordinary flashlight.

No

Change batteries when needed - no specific servicing

interval.

Indefinite - battery life 40 hours at 4 hours per day.

5.625" x 3.25" x 1.875"

25 ounces with batteries

Designed for "in hand use"

3 years

$97.50

Stock - i week

Supplied with practice leak; I ounce in I0 years. Complete

solid state device - long flexible conductor with miniature

probe. Pinpoints leaks, large or small, even in a room or

fixture containing concentrations of Halogen gases.
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Thermal Instrument Company

Flow (thermal mass flow rate)

Any gas

Portable Model #59

0-0.12 to 0-3 x 105 std. cc/min.

0.01 std. cc/min.

ll5vj 60 Hz_ 20w.

Panel meter and 0 to i0 my to potentiometric instrument.

0.2%

5 seconds

Maximum effect of environmental temperature
variations from 0 to 200°F is 1%.

Excitation voltage variations (90-135v) have no effect.

No

None required (solid state electronics)

i0 years

Power and readout unit - 8" x 6" x 8"

Sensor - 6" x 4" x 3"

Power Unit - 15 Ibs. Sensor - 6 Ibs.

Yes

9 years

$1180 - add $80 for panel type readout instrument -

add $400 for built-in amplifier.

6 to 8 weeks

Standard sensor useable to 500°F.

Special sensors available for llO0°F service.

Standard flow wetted parts are made of 316S.S.

Flow tubes made of other materials are available.
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Thermal Instrument Company

Flow (Thermal Mass Flow Rate)

For Liquids

Model 60

2.0 grams/min, to 0 to 200 Ibs./min.

l15v, 60 Hz, 20w.

0 to I0 my dc. Optional indicating meter.

Better than 0.2% of reading.

1 second

Standard working pressure: 1200 psi; available to 20,000 psi
Standard working temperature: to 500°F; specials available
to llO0°F.

Standard - 7 1/2" x 13 1/4" x 9". v

Portable - 6" x 8" x 8".
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Tinker & Rasor (Detectron Division)

Sonic - Sonic Range

Primarily for fluid leaks

Detectron LD

Audio spectrum of interest

Amplifier frequency response shaped to emphasize leak
sounds and reduce rumble and other outside interference.

Self contained 9v battery

Audio (2000 ohm earphones)

_ood

Instantaneous

Temperature range 0°F - 130°F

Yes

Overall height 5", diameter 2 3/4"

i lb.

Can be hand carried

4 years

$67.50

Stock item

Uses magnetic pick-up and converts mechanical vibrations

into electrical impulses. These impulses are amplified

and fed to a pair of earphones.
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Tinker & Rasor - (Detectron Division)

Sonic - Sonic Range

Fluid Leak Detector (gas or vapor not detected)

DETECTRON XL-2

Complete Audio Spectrum. One wide-band position -

i0 filter selected frequencies.

3 course selections and fine tuning control to the

acoustic frequency of interest.

Self-contained 9v battery

Visual & Audio (2000 ohm earphones)

Excellent

Instantaneous

Temperature Range 0°F to 130°F

Yes

Battery life under normal conditions approximately

i year.

5 I/8" x 7 i/8" x 2 I/2" (instrument only)

3 ibs.

Hand carry

1 year

$142.00 including carrying case

Stock

XL-2 consists of: Instrument with battery ready to

operate, sensitive magnetic transducer, lightweight

earphones, 7" probe, molded compartmented carrying case.

Uses magnetic pick-up and converts mechanical vibrations _

into electrical impulses which are amplified and connected

to a pair of earphones.
Mute switch allows silencing of headphones without

volume adjustment to allow control of repeatability.
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Trans-Sonics_ Incorporated

Gas Pressure Change - Gas (Variable capacitance-

diaphragm element)

Type No. 130 ° System (consists of pressure cell and

electronics unit)

I0_ i00, i000 torr_ absolute or differential

5 x 10 -5 torr

l15v_ 60 Hz

5 and 10v dc at rated pressure

0.01% to 0.02% dependent on range

0. i second

Requires correction for changes in environmental

temperature.

Pressure cell and electronics unit each are

3 1/4" x 5 1/4" x 5 3/4"

Each unit - 4 ibs.

Yes

i year

Pressure cell $485. Electronics unit $410.

Stock item

Additional instrumentation is required for reading

output voltage.

This equipment has been found useful for measuring gas

leaks of flanges by measuring differential pressure

across a capillary tube through which the leaking gas

is allowed to pass.
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MANUFACTURER:

OPERATINGPRINCIPLE:

MODEL NO. &

TRADENAME :

REPEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

S IZE :

PORTABILITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Turco Products_ Inc., Division of Purex Corp. 3 Ltd.

Chemical Indfcator- Dye

"Dy-Chek"

Good

Penetrant should remain on test area for I0 minutes.

Test Area must be clean and dry. Best penetration

obtained between 70°F and 120°F.

Shelf life one year minimum.

12 oz. spray cans to 55 gallon drums.

Kits available for hand carry

16 years

Complete kits $25.00 - penetrant $i0 to $12 per gallon.

One week

Qualifies under pertinent portions of MIL-I-25135C -

a visible dye penetrant.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RE PEATAB IL ITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Turco Products, Inc., Division of Purex Corp., Ltd.

Chemical Indicator - Fluorescent Dye

"Fluor Chek"

Good

Penetrant should remain on test area for i0 minutes.

Test area must be clean and dry. Best penetration
obtained between 70°F and 120°F.

Shelf life one year minimum

12 oz. spray cans to 55 gallon drums

Kits available for hand carry

i0 years

Penetrant: $5 per gallon ($31.28 per 12 - 12 oz. spray cans)

Emulsifier: $3.50 per gallon - Developer: $9.00 per gallon.

One week

Qualifies under pertinent portions of MIL-I-25135C - a

fluorescent inspection penetrant.
Material is intended for detection of surface defects.

Process requires application of penetrant, then emulsifier

and then a developer solution. Surface is inspected for

flaws under ultraviolet light.

Several formulations available.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

LIFE EXPECTANCY:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

20th Century Electronics Ltd.

Mass Spectrometer

Model A

Model B

Model C

He iium/Hydrogen

He Iium/Ar gon

Masses 2, 3, & 4

"CENTRONIC" LD401

Six positions (xl, x3, xl0, x30, xl00, Test)

i0 "II std. cc/sec.

10 "12 tort partial pressure Helium by accumulation

200-250 v 50 Hz 3.5 amp

Less than one second is required to produce 50%

full scale deflection on xl scale of leak rate meter.

30 ° C maximum due to use of air cooled diffusion pump.

Yes

4 to 5 years with servicing at 6 month intervals.

165 Kg. (360 lb.)

On four wheels

3 years

_1200. O. O.

4 weeks
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MTLNL]FACTL'RER: Union Carbide Corporation - Linde Division

OPERATING PRINCIPLE: Halide Torch - Flame Color

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION :

OU_PL_ S ISNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENACE :

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Non-Combustible halide refrigerant gases

Prest-O-Lite Model No. 2 (Part #11XI6)

I00 to 500,000 PPM

i00 PPM in air

Flame heated copper or copper alloy

Change in color of flame within unit

I00 PPM

2 to 3 seconds

Performs within stated repeatability at ambient temperatures

of -65°F to 150°F.

Yes

Replacement of copper or copper alloy re-action plate

--I0 to I00 hours life expectancy

5 years normal usage

1 1/4" diameter x 6" long

ounces

Yes

23 years

$8.10 list

One week after receipt of order

"Jnit is a leak detecting attachment to an acetylene gas

torch.

°
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFIC ITY:

MODEL NO. &

TRADENAME :

RANGES:

SENS ITIVI TY:

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE :

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT :

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Union Carbide Corporation, Linde Division

Halide Torch Flame Color

Non-Combustible Halide Refrigerant Gases

Prest-O-Lite Model No. I (Part #IOX32)

20 to 500,000 PPM

20 PPM in air

Flame heated copper or copper alloy

Change in color of flame within unit

20 PPM

2 to 3 seconds

Performs within stated repeatability at ambient temperatures

of -65°F to 150°F.

Yes __

Replacement of copper or copper alloy re-action plate

--I0 to I00 hours life expectancy

5 years normal usage

1 1/4" diameter x 6" long

4 ounces

Yes

23 years

$8.10 list

One week after receipt of order

Unit is a leak detector attachment for an acetylene gas

torch.

--i-
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MANUFACTURING:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAM_:

RANGES:

SENS IT iV!TY:

OUTPUT SIGMAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFORTS :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL iTY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Union Industrial Equipment Corporation

Chemical Indicators - Reagent

Reagent type detector tube chosen for specific gases

of interest available for detecting nitrogen dioxide,

oxygen_ carben dioxide, and many other gases and vapors.

unico Model 400 - Kitagawa Detector

Reagent type detector tubes available for over 50 different

gases and vapors with full scale ranges varying from 20

ppm to 30%.

As low as i ppm on some tubes

Length of reagent discoloration in tube

Less than three minutes for complete test

Temperature correction information is supplied.

Contamination of test area by gases and vapors can

affect accuracy of measurement of specific gas to
be detected.

Reagent tubes are single test items

Complete kit - i0" x 8" x 2"

Complete kit - 3 Ibs.

Can be hand carried

i0 years

Cost of gas detector kit is $80.00. Cost of reagent

tubes is $.50 to $I.00 each and are packaged in lots

of 5-10-20.

Irm_ediate

Gas detector kit includes all equipment and information

required for making detection tests. Reagent tubes are

purchased separately. Unit consists of a hand operated

precision pump which draws a gas sample into a detector

tube filled with a chemical reagent which changes color

upon exposure to the gas of interest. The length of

color change varies with gas concentration.
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MANUFACTURER•

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVlTY:

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Union Industrial Equipment Corporation

Chemical Indicator - Reagent

Oxygen in air

No. 707

2 to 30% by volume

±1% full scale

±5% full scale

1 1/2 minutes for test

Temperature correction table provided

Indefinite

Complete kit

Complete kit

Complete portable

3 years

$22.75

From stock

8" x 4" x 2 1/2"

I ibs.

Can be used in explosive atmospheres.

Manually operated piston type plunger draws gas sample

into reaction tube. Length of discoloration in reaction

tube is proportional to oxygen concentration.
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MANUFACTURER :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE T]2dE:

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EX2ECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE:

DELIVERY TIME:

REMARKS:

Union Industrial Equipment Corporation

Chemical Indicators-Reagent (Color change insensor is

detected by photoelectric reagent cell)

Carbon monoxide

Model No. 777

Is a function of both exposure time and gas

concentration

50 ppm

120v, 60 Hz, 3w

Visual indicating instrument and audible alarm.

Responds to full scale and sounds alarm in 2 to 3

minutes in a I000 ppm concentration and in 4 to 5

hours for 50 ppm.

Not sensitive to ambient changes in temperature

and humidity.

No

Replace sensing tab after tripping alarm or

every 60 days of use.

i0 years

8 5/16" x 4 1/4" x 3 3/16"

3 Ibs.

Yes - battery pack available for power source.

4 years

$124.50

From stock

The detecting sensor responds to the presence of CO by

changing color. The color change is detected by a

photoelectric system. When the concentration reaches

the t_ic level, a relay is tripped and an alarm sounded.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVlTY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT PAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT :

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Union Industrial Equipment Corporation

Chemical Indicators - Reagent (Color change in sensor

is detected by photoelectric cell)

Carbon monoxide

Model 888

Is a function of both the exposure time and gas
concentration.

-50 ppm

120v ac-dc plus internal ni::_el-cadmium battery

and built-in charger

Visual indicating instrument and audible alarm

Responds to full scale and sounds alarm in 2 to 3 min. ma

I000 ppm concentration and in 4 to 5 hours for 50 ppm.

Not sensitive to ambient changes in temperature and

humidity.

Yes

Recharge batteries after i0 hours of service.

Replace sensing tab after tripping alarm or every 60

days of use.

i0 years

8 5/16" x 4 1/4" x 3 3/16"

3 I/2 ibs.

Yes

4 years

$190

From stock

Automarlcally converts to battery operation in event

of power line failure.

The sensor responds to the presence of carbon monoxldeby

changing color. The color change is detected by a photo-

electric system. When the gas concentration reaches th

toxic level, a relay is tripped and an alarm is sounded.
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MANU'FAZ._JRER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

LMPEDANCE :

REPEATABILITY:

RESPONSE TIME:

DOES IT FAIL SAFE:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Union Industrial Equipment Corporation

Interferometer

Gases

Model #760

As low as 0 to 2% by volume - varies with gas being

measured.

C.1% for hydrogen 3 carbon dioxide or propane.

i!5v 3 50/60 Hz.

Panel indicating instrument and audible and visual alarm.

_5% of full scale

3 seconds

No

Nominal

I0 years

II 7/8" x 7 1/8" x 8 5/8"

15.5 Ibs.

Good portability

3 years

$1500

3 - 4 weeks

The displacement of interference light fringes

produced by the optical path difference between the

sample gas and air standard is measured by a photo-

electric circuit.

A built-in vacuum pump draws the sample into the

analyzing chamber.

No special training is required for operation.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME :

RANGES :

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

DOES IT FAlL SAFE:

MAINTENANCE :

SIZE :

WEIGHT:

PORTABILITY:

PRICE :

DELIVERY TIME :

REMARKS :

Union Industrial Equipment Corporation

Catalytic Combusion

Combustible gases and vapors

Model #202

0 to 100% LEL

4 standard flashlight cells (6v)

Indicating instrument and audible alarm at 1/3 of LEL

No

Replace batteries when necessary

6 1/2" x 5" x 3 1/4"

5 1/2 Ibs.

Yes

$180_ With built-in battery charger $270

From stock

Alarm point at 1/3 of LEL

-
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MAh"JFACTURER:

OPERATINGPRINCIPLE:

MODELNO. &
TRADENAME:

SENSITIVITY:

RESPONSETIME:

ENVIRONMEN_rEFFECTS:

SIZE:

PORTAB IL ITY:

PRICE :

REMARKS :

United States Gulf Corporation

Bubble

"Detek"

i x I0 -4 cc/sec.

Almost instant

Formulas available to -65°F and to +210°F

6 ounce plastic bottles - also available by

the gallon

Can be hand carried

From $19.10 to $24.00 per carton (8 bottles,

6 ounces each) depending on formulation.

Derek dries clean and does not require removing

after testing. Detek penetrates dirt, oil films,

scale and grease. It is non-corrosive, non-

flammable, non-explosive and is not harmful to

users or apparatus.

Various formulas are available for compatibility

with gases such as oxygen, nitrogen, hydrogen,

refrigerant gases7 natural gas and air.

. °
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODEL No. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

LIFE EXPECTANCy:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

United States Safety Service Company

Chemical Indicator - Reagent

Carbon monoxide

#300 Saf-Co-Meter (Detector kit)

0 to 0.04% CO

0. OO5% CO

Gas is drawn through the indicating tube byaspirator bulb.

Color change of indicating gel in tube is comparedto color chart.

36 seconds exposure per tube

Operating temperature range is 65 to 85°F.
used at altitudes up to 403000 ft.

(Detector kit indefinite) (Tubes - one year)

Kit: approximately 3 1/2" x 3" x 6"

1 ibs.

Can be

Ye s

20 years

$30.00 complete with carrying case and 12 tubes

Stock item

Glass sealed indicating tubes developed by National Bureau

of Standards and also conform to Military Spec MIL-T-3948A.
Kits also may be obtained to Military Specification
MIL-D-3945A upon request for quotation.

Presence of nitrogen dioxide interferes with the normal
development of color in the tube. Filter tubes of

activated carbon placed ahead of the sensing tube will
remove this gas from the sample.

30-222



M_NUF AC %_oqlER:

OPERATLNG PRINCIPLE

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

MAINTENANCE:

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PaR TABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME:

REMARKS :

Universal Controls Corporation

Flow

Gases

Dragnet

0-30 and 0-200 PS!G

1/4" water column pressure loss.

Hand Pump

Visual - Flow through bubbler bottle

i minute

Volume displacement subject to temperature changes.

Yearly

5-10 years

I0" diameter x 30"

26 Ibs.

Yes

15 years

$IOO

Stock - 3 weeka

Pressure reference tank volume is approximately ii0 cubic

inches. Test systems should not be significantly different

in volume,

System and connected storage tank are pressurized by hand

pump. A system leak is measured by flow through a bubbler
bottle located between the reference tank and the system.

Gas is admitted into test system to make up pressure loss

due to gas leak. Gas volume admitted is measured by a

bubbler bottle.

.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

REPEATABILITY:

RESPONSETIME:

ENVIRONMENTEFFECTS:

DOES IT PAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE

DELIVERY TIME :

REMARKS :

Uson Corporation

Thermal Conductivity

None (on standard unit). Custom units available with

partial selectivity to helium and argon.

Model 500 Series Leak Detectors

Automatic range change

i x 10 -3 std. cc/sec, full scale on Helium (Std.) Custom

Unit available for I x 10 -4 cc/sec.

Rechargeable batteries (6 volt) and/or directly from

I05-125v, 50-63 Hz.

Meter-100 microampere, light and audible signal.

+5%

Less than I second full scale, any range

Voltage- I05-125v, 50-63 Hz 4
o

Temperature - I0 to 130°P

Humidity - 0 to 100% R.H.

No

No periodic servicing (one year unconditional warranty).

20 years

Two units, each smaller than a telephone

Two, four pound packages

Easily hand carried

Four years

$2600- 3800

Three weeks

Detects helium, hydrogen, argon, all refrigerants, fluorine_

and others. Unaffected by background gases.

Available in totally explosion-proof version for Class I,

Division I, Groups B & D (model 540).

Explosion-proof Model 540 has FSN 4940-928-4698.
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MANUFACTURE R :

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENSITIVITY:

EXC iTAT ION :

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

LIFE EXPECTANCY _-

SIZE :

WE IGHT :

PORTAB IL IYY:

TIME ON MARkeT:

PRICE :

DELIVERY TIME :

REMARKS :

Vacuum Instrument Corporation

Mass Spectrometer

Helium or Argon

MD I00_ 100A, 12_ 120A, 140

Seven (XI to XI000)

i x 10 -4 std. cc/seco to 5 x 10 -14 std. cc/sec.

5 x 10-14 stdo cc/sec.

llSv ac_ I0 amps.

Panel Meter

instantaneous at test port inlet.

Normal factory environment is recommended.

Can be used outdoors in good weather.

Yes

i0 years

34" x 24" x 30"

Approximately 400 ibs.

Mounted on rubber casters

5 years

$4675 to $6885

2 4 weeks

Accessories available include: Calibrated helium

leak, tracer gas sprayer kit, sampling sniffer

probe° Audible leak indicator_ and test port

adapters. Units do not require liquid nitrogen

traps° Getter system removes all but inert gases.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

RESPONSE TIME:

ENVIRONMENT EFFECTS:

DOES IT FAlL SAFE:

PORTABILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Vacuum Instrument Corporation

Mass Spectrometer

Helium

MD 190

Seven (XI to XI000)

10-5 to 2 x I0 -I0 std. cc/sec.

2 x i0 "I0 std. cc/sec.

l15v ac 3 I0 amps

Panel Meter

Instantaneous at test port inlet.

Normal factory environment is recommended.

Can be used outdoors in good weather.

Yes

Moveable table model

i year

$1975

2 - 4 weeks

Accessories available include: Calibrated helium

leak_ tracer gas sprayer kit 3 sampling sniffer

probe. Portable leak detectorj and test port

adapters. Units do not require liquid nitrogen

traps. Getter system removes all but inert gases.
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MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGE S :

SENS IT IVITY:

EXC ITAT iON:

OUTPUT SIGNAL

IMPEDANCE :

DOES IT FAIL SAFE:

MA INTE NANCE :

SIZE :

WE IGHT :

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS :

Varian Associates (Vacuum Division)

Mass Spectrometer

Helium

#LD-100

7 sensitivity ranges - XI to Xl000

i0-I0i x std. cc/sec.

Approximately 15 amps at l15v, 60 Hz with auxiliary

roughing pump system.

Meter

No

As needed

16" wide x 27" high

350 Ibs.

Is mounted on rubber wheels

2 years

$5195

30 days after recipt of order

This equipment includes auxiliary mechanical pump

and automatic rough, test and vent valving assemblies.

Accessories available.

_. o
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MANUFACTURING:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVITY:

EXC ITAT ION:

OUTPUT SIGNAL

IMPEDANCE :

RE PEATAB IL ITY:

RESPONSE TIME :

DOES IT FAIL SAFE:

MAINTENANCE :

SIZE :

WEIGHT:

PORTAB ILITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Varian Mess Analysen Technlk GmbH (Heraeus-Engelhard

Vacuum, Inc. distributor)

Mass Spectrometer

Helium (other gases mass 2-92)

Atlas Gas Detector Model C

Nine ranges:

X3000, XlOj000)

Helium I x 10-12 std. cc/sec., Argon I x 10 -12

Freon 5 x I0-I0 std. cc/sec.

Xl, X3, Xl0_ X30_ Xl00, X300, XI000,

llbv, 60 Hz, 600 volt amps

i0 millivolt or I00 millivolt full scale

std. cc/sec.

±2% of reading

Less than 0.5 seconds for 50% of leak when volume

ot test sample is less than 5 liters.

Yes

As required

20" x 22" x 18 1/2"

Approximately 210 Ibs.

Cart available as standard option

About 5 years

Basic unit $6j080

Stock

Many accessories available for use in conjuction

with mass spectrometer.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES :

SENS IT IVITY:

EXC ITAT ION:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

DOES IT FAIL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE :

WE IGHT :

PORTABILITY:

PRICE :

REMARKS :

Veeco Instruments_ inc.

Mass Spectrometer

Helium

Model MS-9ABC

7 sensitivity ranges (1-3-10-30-100-300-1000)

i x I0 -I0 std. cc/sec or I part helium in i0

million parts air.

24 amps at 115 v 60 Hz.

Almost instantaneous

Can be used in normal factory environment.

Yes - only in automatic operation.

Requires frequent daily tuning of electronics

circuitry. Piping and vacuum lines cleaned

approximately every 2 months to remove out gassing
contaminants.

No experience in this area

41" x 27 3/4" x 36 1/2"

Approximately 600 ibs.

Unit mounted on rubber casters.

Exact price not known, unit purchased thru a

rental plan.

Accessories available - calibrated leak helium

probe assembly sniffer
kit reducers audible

alarm extension cable

--i-

_° •
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

SENS IT IV ITY :

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

DOES IT FAlL SAFE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET :

PRICE :

DELIVERY TIME :

REMARKS •

Volumetrics

Volumetric Displacement

VM

1 x 10 -5 std. cc/sec helium

Digital indicator

Requires constant gas temperature for maximum accuracy.

Temperature range -65°F to + 180°F.

No

None normally required.

250,000 cycles

Approximately 6" wide x i0" deep x approximately 3" high.

4.8 ibs.

Portable when not attached to system.

2 years.

$395.00

From stock

Accuracy of measurement depends on accuracy and

repeatibility of the pressure sensor used_ (auxiliary).

System is pressurized 3 known period of time elapses_

piston is adjusted to restore original system pressure,

displacement is read on counter.

Pressure range: 0-i000 psia. Adjustment sensitivity is

0.0005 psi.

Model VM-II (cost $14_5) is a volumetric micrometer with

resolution of i x i0 -vcu in. provides adjustment range

of 0.000001 to 0.880000 cu. in. Accuracy of 0.1% of

reading throughout range of vacuum to I000 psia, when

using pressure sensor of such accuracy. With a fused--_

quartz pressure sensor, an accuracy of 0.015% of reading

is available.

Volume readout is digital.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVI TY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

REPEATABILITY:

RESPONSE TIME :

ENVIRONMENT EFFECTS :

SIZE:

WEIGHT:

PORTABILITY:

PRICE:

Wallace & Tiernan, Inc.

Pressure Change - Gas

Series 660A

Various ranges from 0-120 inches of water to 0-i00 psi

absolute_ gage or differential.

0.005% of full scale

l15v or 220v_ 50 or 60 Hz; i00 watts

Digital readout (direct reading).

0.02% of full scale

5 to 40 seconds, depending on range (5 seconds per thousand

register counts)

Temperature sensitivity is .05% for 10°F

Operating temperature limits are 0°F_120°F

Ii" x I0" x 8"

21 Ibs.

Can be carried by hand.

$1000 to $1200
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MANb'FACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME :

OUTPUT SIGNAL

IMPEDANCE:

MAINTENANCE :

LIFE EXPECTANCY:

SIZE:

WEIGHT:

PORTABILITY:

TIME ON MARKET:

PRICE

DELIVERY TIME:

REMARKS :

Watsco_ Incorporated

Bubble (liquid Applicant)

None

DL-I "Search"

Visual - Bubbles form in leak area

None

Indefinite

6" x 2 1/2" x 1 1/8"

4 fluid ounces squeeze bottle - I gal. (8 1/2 Ibs.)

Pocket size

8 years

$i

Stock

Contains no glycerin. Is safe to use with oxygen.

--io

30-232



MANUFACTURER:

OPERATING PRINCIPLE :

SPECIFICITY:

MODEL NO. &

TRADENAME :

EXCITATION :

OUTPUT SIGNAL

IMPEDANCE :

SIZE :

PORTABILITY:

PRICE :

REMARKS :

The Welch Scientific Company

Spark Coil (Tesla Type)

For finding leaks in glass vacuum systems.

Leak Detector - Catalog No. 2619

115 volts ac or dc

Glow is produced in a vacuum system when a leak is

approached with the spark

2" dia. x 12" long

Hold in hand

$16.75

Not recommended for very thin wall systems.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE :

ENVIRONMENT EFFECTS :

WE IGHT:

PORTAB EL ITY:

PRICE :

REMARKS :

Whittaker Corporation - Pace Wiancko Division

Pressure Change - Gas

Model Q3403 Secondary Pressure Standard

18 ranges from 0-i to 0-I0,000 psi gage, absolute or
differential.

*Less than 0.05% full scale

i05-125v ac, 60 Hz, 65w

lOv rms (nominal) at I0,000 Hz at 0 input and

12,500 Hz at full scale.

Output impedance is approximately i,000 ohms.

Operating temperature: 40°F to ll0°F.

Less than 25 ibs. (including plug-in pressure head)

Has a carrying handle

$2700 including one pressure head

Two types of pressure heads are offered. One mounts in

the front panel of the Secondary Pressure Standard and

the other is for remote operation at distances up to

500 feet. Each head incorporates _n integral heater

and thermostat to stabilize the temperature of the

transducer for optimum performance.

*With the optional Frequency Multiplier 3 the basic 2500 Hz

full scale frequency can be multiplied by 2 or 4 increasing

the pressure reading resolution.
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MANUFACTURER:

OPERATING PRINCIPLE:

SPECIFICITY:

MODEL NO. &

TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUT SIGNAL

IMPEDANCE:

REPEATABILITY:

RESPONSE TLME :

ENVIRONMENT EFFECTS :

SIZE :

WEIGHT:

PORTABILITY:

PRICE:

DELI_RY:

REMARKS:

Whittaker Iorporation - Pace Wiancko Division

Pressure Change - Gas

None_Can handle corrosive liquids and gases on both

sides of pressure sensor)

Model DMI - Digital Manometer (4 digit presentation)

Interchangeable dual range pressure heads of 0-I and 0-I0;

0-i00; 0-I00 and 0-I000 nan Hg. (Dizferential, gage or

absolute)

Resolution: Better than 0.001% of range

l10-120v, 60 Hz

Visual (Digital Indicator) and Analog output voltage 0-I0
volts dz full scale

Accuracy: _I/4% range, including linearity and repeatability.

No error to I000 Hz.

Ambient temperature range: 32° to 150°F

6" x I0 3/4" x 7.5"

9 ibs.

Yes

0 to I mm Hg range system - $12A5

All other ranges - $995

Additional pressure heads - $350 each

Six weeks

The pressure head may be detached and installed at a

remote point using an extension cable (I0 ft.) supplied

for the purpose.
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MANUFACTURER:

OPERATING PRINCIPLE :

MODEL NO. &

TRADENAME :

RANGES :

SENS IT IVITY:

OUTPUT SIGNAL

IMPEDANCE :

RESPONSE TIME :

LIFE EXPECTANCY:

SIZE :

WE IGHT:

PORTAB IL ITY:

TIME ON MARKET:

PRICE :

DELIVERY TIME :

REMARKS :

Winton Products Co., Inc.

Bubble

"Sherlock"

-65 ° to plus 160°F

0.16 ounce per year (2.88 x 10 -5 std. cc/sec.)

Clusters of foam or bubbles

5 seconds to 1 minute depending on size of leaks

Shelf llfe I year

4 oz. dispensers to 55-gal. drums

Depends on container size

4 and 8 oz. dispensers can be hand carried

16 years

Depends on type of fluid ordered and container size

Type I: 4 oz. $0.70 - $3.70 gal.

Type II: 4 oz. $0.85 - $5.20 gal.

24 hours receipt of order

Various types

Regular - for use above freezing

Low Temp. - for use below and above freezing

Extra Low - extreme temperatures (-50°F)

Type CG - for pure oxygen and compressed gases

Type F - for refrigeration and air conditioning applications

Type I - for oxygen (+35°F to 160°F) - meets AF Spec

MIL-L-25567A (ASG)

Type II - for oxygen (-65°F to +35°F) - meets AF Spec

MIL-L-25567A (ASG)

Various type applicators and spraying equipment available.

Dries clean.
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MANUFACTURER:

OPERATINGPRINCIPLE:

SPECIFICITY:

MODELNO. &
TRADENAME:

RANGES:

SENSITIVITY:

EXCITATION:

OUTPUTSIGNAL
IMPEDANCE:

RESPONSETIME:

ENVIRONMENTEFFECTS:

MAINTENANCE:

LIFE EXPECTANCY:

SIZE:

WE IGHT :

PORTAB IL ITY:

PRICE :

DELIVERY TIME :

Yellow Springs Instrument Company, Inc.

Electrochemical Cell

Sensor is selective for oxygen except for Halogens and

easily reduced gases rarely encountered.

#52

0-50% oxygen

0.2%

Two 7.0v Hg. batteries; one 1.3v Hg. battery

Panel Instrument

90% complete within 30 seconds; stable within 45 seconds

Sample should be close to ambient when collected.

Analyzing cell is temperature compensated.

Recharge the cell and change Teflon membrane every
few months.

Battery life is six months in normal operation or
500 hours of continuous use.

9 1/2" x 7 1/2" x 7 1/2"

5 ibs.

Yes

$245

Stock
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PROPERTIES OF TRACER GASES

Thern%al Diffusion

Conductivity viscosity Coefficient

Chemical Molecular BTU/hr ft a poise x 10" ftA/hr at

Name Formula _ F/ft at 20"C at 0°C 1 arm and 0"C

Acetylene CaH _ 26 0.01128 93.5 0.55

Air mixture 29.9 0.01478 170.8

Ammonia NH a 17 0.01333 91.8 0.66

Argon A 39.9 0.01016 209.6 0.61

Benzene C6H" 78 0.00538 70.9 0.30

Butane C,H_ 58 0.00822 84.04,14.7C 0.33

Carbon dioxide CO_ 44 0.00873 139.0 0.52

Carbon disulfide CS_ 76 0.00410 91.I 0.36

Carbon monoxlde CO 28 0.01360 166 0.67

Ethane C_H I 30 0.01102 84.8 0.49

Ethylene C_H, 28 0.01025 90.66,0.05C 0.52

Halogenated hydrocarbon

F-If CClaF 137.4 0.00470 96.0 0.30

Halogenated hydrocarbon

F-12 CCI_F, 120.9 0.00542 328, 5F 0.32

Halogenated hydrocarbon

F-21 CHCI_F 102.9 0.00554 101.0 0.33

Halogenated hydrocarbon

F-22 CHCIF_ 86.5 0.00660 286, 5F 0.37

Halogenated hydrocarbon

F-If3 CCI_F-CCI_F 187.4 0.00438 93.0 0.25

Halogenated hydrocarbon

F-ll4 CCIF_-CCIF 170.9 0.00629 102.0 0.28

Helium He 4 0.08740 186 2.7

Hydrogen H a 2 0.10770 83.5 2.6

Hydrogen sulfide H_S 34 0.00770 116.6 0.53

Krypton Kr 83.8 0.00540 232.7 0.51

Methane CH, 16 0.01872 102.6 0.72

Neon Ne 20.2 0.02660 297.3 1.1

Nitric oxide NO 30 0.01180 178 0.70

Nitrogen N_ 28 0.01462 166 0.68

Nltrous oxide N,O 44 0.00925 136.2 0.52

Oxygen O 4 32 0.01490 189 0.68

Propane C_H, 44 0.00925 79.5,17.9C 0.39

Sulfur dioxide SO a 64 0.00514 117 0.42

Water vapor H_O 18 0.01087 90.4 0.85

Xenon Xe 131.3 0.03000 210.1 0.42

Heat

Capacity Molecular

Ratio Diameter

Cp/Cv cm x 10"

1.26, 15C

1.403, 0C

1.31, 25C 2.97

1.67, 25C 3.67

i.i0, 90C 7.65

i.ii, 15C 7.06

1.29, 25C 4.65

1.63,99.7C

1.404, 15C 3.19

1.19 5.37

1.255, 15C

1.124,160F

1.157,160F

1.077,160F

1.080,160F

1.67, 25C 2.18

1.41 2.75

1.32, 15C

1.68, 19C 4.15

1.31, 15C 4.19

1.64, 19C 2.60

1.4, 15C

1.40 3.15

1.303, 15C

1.40 2.92

1.13 6.32

1.29, 15C

1.324,100C

1.66, 19C 4.91
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PRECAUTIONARY MEASURES FOR USING VARIOUS TRACER GASES*

AMMONIA

At room temperature and atmospheric pressure, ammonia is a

colorless, alkaline gas having a pungent odor. Ammonia dissolves

readily in water. It is shipped as a liquefied gas under its own

vapor pressure of 114 psig at 70°F.

The pungent odor of ammonia provides ample warning of its

presence. The American Conference of Governmental Industrial

Hygienists has recommended 100 parts per million as the maximum

allowable concentration for an eight-hour daily exposure. How-

ever, concentrations in the range of 50 to i00 ppm, although not

harmful, will be of considerable nuisance. It is therefore un-

likely that an individual would unknowlngly become overexposed.

The physiological effects of various concentrations of am-

monia are:

Atmospheric
Concentration

Physlological
Effects

20 ppm First perceptible odor

40 ppm A few individuals may suf-

fer sllght eye irrltation

100 ppm Noticeable irritation of

eyes and nasal passages

after few minutes exposure

400 ppm Severe irritation of the

throat, nasal passages,

and upper respiratory
tract

700 ppm Severe eye irritation. No

permanent effect if the

exposure is limited to
less than one-half hour

1700 ppm Serious coughing, bronchial

spasms, less than a half

hour of exposure may be
fatal

5000 ppm Serious edema, strangula-

tion, asphyxia; fatal

almost immediately

*Courtesy of Mr. R.J. Roehrs, Nooter Corporation, St. Louis,
Missouri
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The corrosive action of high concentration of ammonia (above
700 ppm) can cause extensive injuries to the eyes, causing severe

irritation, hemorrhages, and swollen lids. If it is not treated

immediately, partial or total loss of sight may result. The mu-

cous lining of the mouth, throat, nose and lungs is particularly

sensitive to ammonia attack.

One percent ammonia in the atmosphere is mildly irritant

to moist skin; two percent has a more pronounced effect; three

percent produces a stinging sensation and may produce chemical

burns with blisters after a few minutes. Liquid ammonia in con-

tact with the skin will produce severe burns, and the freezing

effect due to rapid evaporation from the skin surface can cause

frostbite.

Anyone working with ammonia should wear rubber gloves,

chemical goggles, and a rubber or plastic apron. Cylinders

should never be dropped or be permitted to strike each other

violently. No part of a cylinder should be subjected to a tem-

perature higher than 125°F. Ammonia cylinders should never be

directly heated by steam or flames. Uncontrolled heating of a

cylinder can cause the liquid to expand to a point where dan-

gerous hydrostatic pressure will be developed. Any heating
should be done in a thermostatted water or oil bath. The tem-

perature should not be allowed to exceed 125°F. Cylinders con-

taining less than 165 pounds of ammonia are not equipped with

safety devices.

Although ammonia does not represent a serious flammability

hazard, mixtures of air and ammonia containing from fifteen per-

cent to twenty-eight percent ammonia by volume will ignite when

sparked or exposed to temperatures exceeding 1200°F. Therefore,

flames and sparks should nct be allowed in the area where am-

monia is being used.

Iron and steel are recommended for all equipment coming in

contact with ammonia. Copper, tin, zinc, and their alloys are

attacked by moist ammonia and should not be used. Piping should

be rigid steel except where short connections are needed, such

as between cylinders and manifold or pipe lines. For these ap-

plications reinforced, flexible neoprene line is recommended.

A/mnonia can combine with mercury to form explosive compounds;

therefore, instruments containing mercury that will be exposed to

ammonia should not be used.

ARGON

Argon is a colorless, odorless, and tasteless gas, somewhat

soluble in water (4 volumes in i00). It is normally supplied as

a nonliquefied gas compressed into cylinders at a pressure of

approximately 2200 psig at 70°F.

Argon is nontoxic, but can act as a simple asphyxiant by

displacing the amount of air necessary to support life.
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Argon is a chemically inactive gas. It will not react with

other elements or compounds. While a few compounds of argon and

other rare gases are reported to have been prepared, the results

obtained may be considered of scientific interest only.

CARBON DIOXIDE

Carbon dioxide is a nonflammable, colorless, odorless,

slightly acid gas. It is approximately one and one-half times

as heavy as air. One volume of carbon dioxide will dissolve in

approximately one volume of water at atmospheric pressure and

15°C. In high concentrations it has an acidic taste. Carbon

dioxide is shipped in Interstate Commerce Commission approved,

high-pressure steel cylinders as a liquid under its own vapor

pressure of approximately 830 psig at 70°F.

In high concentrations carbon dioxide can paralyze the re-

spiratory center. It is, therefore, an industrial hazard. It
is heavier than air and does not diffuse readily; consequently,

it may collect in confined, unventilated areas. Where persons

are working in confined spaces, the amount of carbon dioxide

formed by breathing may assume dangerous proportions. Carbon

dioxide is the regulator of the breathing function; an increase
in the carbon dioxide inhaled will cause an increased rate of

breathing:

Carbon Dioxide

in Air

(volume percent)

0.i-I

Increased Lun@ Ventilation

Slight and unnoticeable

increase

50% increase

100% increase

300% increase, breathing
becomes laborious

Ten percent carbon dioxide in air can be endured for only

a few minutes. Twelve to fifteen percent soon causes uncon-

sciousness. Twenty-five percent may cause death in exposures

for several hours. A generally recommended maximum allowable

concentration for an eight-hour day is 5000 ppm. The normal

concentration of carbon dioxide in the air is 0.03 percent, or

300 ppm.

Carbon dioxide is not a chemically active compound. High

temperatures are generally required to promote its reactions.

Carbon dioxide is stable under normal conditions, but at tem-

peratures above 1500"C carbon dioxide almost completely disso-

ciates into oxygen and carbon monoxide according to the follow-

ing formula:

2 CO_-_ 2 CO +Om
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DICHLORODIFLUOROMETHANE (F-12)

Dichlorodifluoromethane iFreon 12, Genetron 12, Isotron 12,

Ucon 12} is a colorless, nonflammable gas at normal temperatures

and pressure. In concentrations of less than 20 percent dichloro-

difluoromethane is odorless; in higher concentrations its odor

is mild and somewhat ethereal, and similar to that of carbon

tetrachloride. It is readily llquefied and is shipped in steel

cylinders as a liquefled gas under its own vapor pressure of

about 70 psig at 70°F.

Dichlorodifluoromethane is practically nontoxic. It shows

no toxic effects In guinea pigs in concentrations up to at least

20 percent (by volume} for two hour exposures. In higher con-

centrations, it may produce some physlological action, caused

primarily by oxygen deficiency. The generally accepted maximum

allowable concentration for an eight-hour daily exposure is

1000 parts per m_lllon.

No part of a cylinder should be subjected to a temperature

higher than 125°F. Temperatures in excess of 125°F may cause

excessive hydrostatlc pressure buildup. Never permit a flame

to come in contact wlth any part of a compressed-gas cylinder.

In general, gasket materials should not contain natural

rubber. Neoprene or isoprene rubber, pressed fibers, including

asbestos, with a number of insoluble binders and metallic gaskets

may be used.

Dichlorodifluoromethane zs thermally stable. It is non-

flammable in any mixture with air and will not explode or pro-

pagate a flame. It is hydrolytically stable. It is noncorro-
sive under normal conditions to all common metals of construc-

tion, but it is corrosive at elevated temperatures.

HELIUM

Helium is the lightest member of the rare gas family. It

is an inert, colorless, odorless, and tasteless gas, and is only

slightly soluble in water (0.87 part in 100 parts). Helium is

compressed into cylinders at a pressure of approximately 2200

psig at 70°F.

Helium is nontoxic but can act as an asphyxiant by dlsplac-

ing the necesssary amount of air to support life.

Helium is a chemically inactive gas. It will not react

with other elements or compounds under ordinary conditions.

HYDROGEN CHLORIDE

Anhydrous hydrogen chloride is a colorless, pungent, corro-

sive gas having a suffocating odor. Hydrogen chloride is heavier

than air; it fumes strongly in moist air. It is very soluble in
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water and alcohol, and in ether. While in the cylinder under
pressure, hydrogen chloride is in the form of a gas over liquid,
the cylinder pressure being about 613 psig at 70°F. As long as
liquid is present in the cylinder, the pressure will remain fair-
ly constant.

Hydrogen chloride is a highly toxic gas; it is severely ir-
ritating to the upper respiratory tract and corrosive to the eyes,
skin, and mucous membranes. The acid formed neutralizes the al-
kali of the tissues and causes death as a result of edema or
spasm of the larynx and inflammation of the upper resplratory
system.

According to Walsh-Healey legislation the threshhold limit
value for hydrogen chloride gas is 5 ppm by volume in air. This
is a ceiling limit and cannot be time-weighed. The short expo-
sure tolerance is 50 ppm and the atmospheric concentration im-
mediately hazardous to life is i000 to 2000 ppm. Hydrogen chlo-
ride provides adequate warning for prompt voluntary withdrawal
from contaminated atmospheres.

Workers who handle hydrogen chloride should wear protective
clothing such as rubber or plastic aprons, rubber gloves, and
suitable gas-tight chemical safety goggles. Outside clothing
of wool or other acid-resistant fabrics is also recommended.

Hydrogen chloride is essentially inert to metals and does
not attack the commonly used structural metals under normal con-
ditions of use (room temperature and atmospheric pressure). In
the presence of moisture, however, hydrogen chloride will corrode
most metals other than silver, platinum, and tantalum. When used
at higher pressures, it is necessary to use extra-heavy black-
iron pipe throughout. No galvanized pipe or brass or bronze
fittings should be used, since these will corrode. High-pressure
monel or aluminum-iron-bronze valves should be used throughout.
Hydrogen chloride lines should always be shut off from the use
end, backward to the cylinders.

Hydrogen chloride is thermally stable. It is stable to
oxidation except at elevated temperatures. Hydrogen chloride
is extremely soluble in water; its aqueous solution is a strong
acid.

HYDROGEN

Hydrogen is colorless and odorless, and is the lightest gas

known. Hydrogen is only very slightly soluble in water (1.93

volumes in i00 volumes of water). Hydrogen is usually shipped

in high-pressure steel cylinders, 2000 psig at 70°F.

Hydrogen is nontoxic, but can act as an asphyxiant by dis-

placing the amount of air required to support life.

Cylinders of hydrogen should never be used in areas where

flames, excessive heat, or sparks may occur. Only explosion-
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proof equipment and spark-proof tools should be used in areas
where hydrogen is handled. All equipment and lines used with
hydrogen should be grounded. A flame should never be used to
detect hydrogen gas leaks. Reserve stocks of hydrogen should
never be stored wlth cyl_nders containing oxygen or other highly
oxidizlng materlals.

Hydrogen, although relatively inactive at ambient tempera-
tures, reacts with almost all the other elements at high temper-
atures. The reaction between hydrogen and oxygen at high tem-
peratures is usually violent. Hydrogen will reduce metallic
oxides at elevated temperatures.

KRYPTON

Krypton is an inert gas, and one of the rarest gases known.

Krypton exlsts in minute traces in the atmosphere (i ppm by vol-
ume of air). Krypton is a colorless and odorless gas, and only

slightly soluble In water. Krypton is available in small cylin-

ders at various pressures up to 800 psig, and in Pyrex liter

flasks.

Krypton is chemlcally inert under all normal conditions,
and does not combine chemically with other elements or compounds.

METHANE

Methane is a flammable, colorless, odorless, and tasteless

gas. It is the major constituent of natural gas. The material

is normally shipped as a nonllquefied gas in high-pressure cyl-

inders, approximately 2265 psig at 70°F.

Methane is not considered a toxic gas. Physlologically, it

is a simple asphyxiant; in high concentrations it can displace

the oxygen required to sustain life. Miners frequently breathe

air containing nlne percent of methane and do not appear to suf-

fer. When the percentage rises above this point, pressure on

the forehead and eyes is noticed. However, this pressure disap-

pears when fresh air is again breathed.

The hazards due to the handling of methane stem mainly from

its extreme flammability. Although methane is generally inert

at room temperature and atomospheric pressure, it can undergo re-
action under certain conditions. Cylinders of methane should be

stored in a well-ventilated area away from heat and all igni_ion

sources. Flames should never be used to detect flammable gas

leaks. Methane should not be used around sparking motors or

other non-explosion-proof equipment. Reserve stocks of methane

cylinders should never be stored with cylinders containing oxy-

gen, chlorine, or other highly oxidizing or flammable materials.

NEON

Neon is a rare inert gas that exists in the atmosphere.

Neon constitutes 0.00182 percent, by volume, of air. Neon is

A-7

--L-



,

a colorless and odorless gas; it is normally available in com-

pressed cylinders at varying pressures up to 1800 psig, and also

in Pyrex flasks at atmospheric pressure.

Neon is nontoxic but can act as an asphyxiant by displac-

ing the amount of air necessary to support life.

Neon is chemically inert under all normal conditions.

NITROGEN

Nitrogen comprises approximately 79 percent, by volume, of

the air. It will not burn and will not support combustion. Ni-

trogen is normally available in cylinders compressed to 2200 psig
at 70°F.

Nitrogen is nontoxic but can act as an asphyxlant by dis-

placing the amount of air necessary to sustain life.

Nitrogen is extremely inert, except when heated to very high
temperatures, where it combines with metals to form nitrides.

NITROUS OXIDE

Nitrous oxide is a colorless, nonflammable, nontoxic gas

with a slightly sweetish taste and odor. It is shipped as a

liquefied compressed gas under its own vapor pressure of about

745 psig at 70°F. It is somewhat soluble in water and more

soluble in alcohol.

Nitrous oxide is nonirritating and is extensively used as

an anesthetic in medicine and dentistry. It is a rather weak

anesthetic, and must be inhaled in high concentrations mixed

with air or oxygen. When inhaled without oxygen, it is a simple

asphyxiant. Inhalation of small amounts often produces a type

of hysteria; hence its trivial name, laughing gas.

Nitrous oxide is stable and comparatively unreactive at

ordinary temperatures. At elevated temperatures nitrous oxide

decomposes into nitrogen and oxygen, the rate of decomposition

being appreciably above 565°C. At elevated temperatures, ni-

trous oxide supports combustion and oxidizes certain organic

compounds, the alkali metals, etc.

OXYGEN

Oxygen is a colorless, odorless, and tasteless gas. Its

outstanding properties are its ability to sustain animal life

and to support combustion. It is somewhat soluble in water.

is usually shipped as a nonliquefied gas at 2200 psig at 70°F.

It

The inhalation of 100 percent oxygen at atmospheric pressure

for periods up to 16 hours per day, for many days, has caused no

observed injury to man. Long periods of exposure to higher pres-

sures can adversely affect neuromuscular coordination and power
of attention.
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Oil, grease, or other readily combustible substances should

never contact oxygen cyl_nders, valves, regulators, gages, and

fittings. Oxygen valves, regulators, gages, or fittings should

never be lubricated with oil or any other combustible substance.

In welding shops and industrial plants using both oxyacetylene

and electric welding apparatus, care should be taken to avoid

the handling of these equipments in any manner which may permit

the compressed-gas cylinders to come in contact with electrical

circuits. Manifolds should never be used for oxygen cylinders

unless constructed by a qualified engineer under the standards of

a recognlzed safety authority. Oxygen should not be allowed to

enter the cyllnder or valve. Cyllnders of oxygen should not be

stored near cylinders of acetylene or other combustible gases.

Unless they are well separated, there should be a fire-resistant

partition between oxygen and acetylene or other cylinders of

combustible gases.

SULFUR DIOXIDE

Sulfur dioxide is a highly irritating, nonflammable, color-

less gas at room temperature and atmospheric pressure. It is

soluble in water, forming a weak solution of sulfurous acid. It

is readily liquefied and is shipped in steel cylinders as a liq-

uefied gas under Its own vapor pressure of about 35 psig at 70°F.

Sulfur dioxide is a highly irritating gas in the vapor form;

it is readily detectable an concentrations of three to five parts

per million, providing ample warning of its presence. In higher

concentrations, the severely irrltating effect of the gas makes

it unlikely that any person would be able to remain in such a

contaminated atmosphere unless he were unconscious or trapped.

Liquid sulfur dioxide may cause skin and eye burns upon con-
tact with those tissues. This results from the freezing effect

of the liquid on the skin or eyes.

Acute exposure to sulfur dioxide has the following effects:

Atmospheric Physiological

Concentration Effects

8-12 ppm

150 ppm

500 ppm

Causes throat irritation,

coughing, constriction of

the chest, tearing, and

smarting of the eyes

Causes extreme irritatlon;

can be tolerated only for

a few minutes

So acutely irritating
that it causes a sense

of suffocation

There are no known systemic effects of acute exposure to

sulfur dioxide. The generally accepted maximum allowable con-
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centration of sulfur dioxide for an eight-hour daily exposure
is ten parts per million.

Sulfur dioxide should be handled only in a well-ventilated
area, preferably a hood with forced ventilation. Personnel han-
dling sulfur dioxide should wear chemical safety goggles and/or
plastic face shields, approved safety shoes, and rubber gloves.
In an emergency, gas masks approved by the U.S. Bureau of Mines

for sulfur dioxide should be worn as required. Additional gas

masks, air-line gas masks, and self-contained breathing appara-

tus should be conveniently located for use in emergencies. In-

stant-acting safety showers should be available in convenient
locations.

Sulfur dioxide forms both sulfite and bisulfite salts.
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AMEI_ICAN VACUUM SOCIETY STANDARD (tentative) AVS 2.1-1963

Helium Mass-spectrometer Leak-Detector Calibration

1. INTRODUCTION

1.1 Scope. This standard prescribes pl_cedures to be
used for calibrating leak detectors of the mass-

spectro,neter type, that is, for dctelanining a sensi-
tivity figure for such leak detectors. The procedures
require the use of a calibrated leak and a standard
mixture; thc preparation and standardization of these
is outside the scope of this standard. Refer to the

appropriate AVS standards.

While various leak-tracing gases have been used in

conjunction with mass-spectrometer leak detectors,
the present standard has reference only to the use of
helium-4.

The application of this standard is restricted to leak
detectors with rated sensitivity corresponding to leak

rates larger than l0 _ atm cc/sec. Factors that are
unimportant for larger leaks may becon|e significant
for gas flows that are substantially less than 10-_

arm cc/sec; consequently, a separate standard will
cover the calibration of detectors designed for leaks
mnallcr than this figure.

1.2 Mode of Presentation. Sections 2-4 deal with

preliminary matters such as definitions.

The dctermination of sensitivity (Sees. 6 and 7) in-

volves a figure referred to as the minimum detectable
signal. The procedure for determining this figure is
covered in Sec. 5 for the determination in See. 6, and
in Sec. 7.2 for the determination in See. 7.

Section 6 covers two procedures for determining mini-
mum detectable leak, the second procedure being fob
lowed if rubber or other polymeric substances are

present in the connections to the standardizing leak.
Section 7 presents the procedure for determining mini-
mum detectable concentration ratio.

2. DESCRIPTION OF LEAK DETECTOR

The helium-leak detector is essentially a gas analyser,

employing the mass-spcctro|neter principle. In the
mass-spectrometer tube, a mixture of gases to be
analyzed is first ionized, then separated into a series

of ion beams or group_, each grotlp ideally represent-
ing a single species of gas. (Strictly speaking, the ions
in cach beam havc the same mass-to-charge ratio.)
In the hclium-leak detector, means are provided for

"tuning" the instrument, so that only the beam duc to
helium hits an ion collector. (The detector can gen-

erally bc tuned to respond to other gases.) The cur-
rent produced by the beam is amplified, and its mag-
nitude is a measure of the partial pressure of the

helium gas in thc incoming sample. It will be assumed
that the gas ionization is produced by the electrons
from a hot filament.

Mass-spectrometer leak detectors consist of a mass-
spectrolneter tube, a high-vacuum system for main-
taining the tube under suitable vacuum with a flow of
gas sample through or into the tube, suitable voltage
supplies, and an ion-cur|'cnt amplifier. The OUtlmt of

the amplifier is displayed on an output meter, and
means al_ provided for reducing the output so that a
large range of leak sizes can be detected and meas-
ured. In other words, the leak detector may be set at
one .of a number of different detection levels, here-
after referred to as sensitivity settings.

Since the spectrometer tube must be able to receive
a gas sample from the system under test and must
also be kept under vacuum, a line is provided for
leading gas from the outside into the spectrometer
tube, and this line must have an isolation valve in it.
In this standard, the line is referred to a_ the sample
inlet line.

3. DEFINITIONS

3.1 GeneraL Many of the technical cxpressions used
in this standard are defined in Glossary o.f Terms

Used in l'acuum Technology, issued by tim American
Vacuum Society (Pergamon Press Inc., New York,
1958). Starred definitions are not from the AVS Glos-

sary.

3.2 Channel Leak. A hole, or pores, in the wall of an

enclosure, capable of passing gas from one side of the

Approved by American Vaccum Society, Inc., October 1963
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wall to the other under action of a pressure or con-
centration differential existing across the _all.

*3.3 Calibrated Leak. A device that permits leakage

through it at a specified rate, of a specified gas, under
specified conditions, the downstream side of the device
being exposed to a pressure sufficiently low to have
negligible effect on the leak rate.

*3.4 Standard Leak Rate. The rate of flow of at-

mospheric air of dewpoint less than -25°C through a
leak under standard conditions specified as follows:

the inlet pressure shall be 1 standard atmosphere
±5%, the outlet pressure shall be less than 0.01 of 1
atmosphere pressure, and the temperature shall be
23°C -" 3.

*3.5 Viscous Leak. A leak, the flow through which is
controlled by viscosity.

*3.6 Membrane Leak. A leak that produces a gas

flow by permeation of the gas through a nonporous
wall. For helium, this wall may be of glass, quartz, or
other suitable material.

3.7 Concentration Ratio. In this standard, the ratio
of partial pressure to total pressure.
3.8 Sensitivity.

$.8.1 In the case of a leak detector, the smallest leak
that can be detected. The leak is specified in terms of
its standard leak rate (see 3.4). A synonym used in
this standard is minimum detectable leak.

$.8.£ In the case of a leak detector, the minimum
concentration ratio of helium gas in a helium-air mix°
ture that can be detected by the device.

4. TEST CONDmONS AND APPARATUS

4.1 Ambient Temperature. Ambient temperature
shall be 23°C ± 3.

4.2 Ambient Pressure. Ambient pressure shall be
760 Torr ± 5%.

4.3 Calibrated Leaks.. Two calibrated leal_ may be
required: one with a relatively small leak rate and
the other with a relatively large leak rate. The small

leak is used for determining minimum detectable leak,
the larp leak for minimum det_table oonmmtratton
ratio. The small leak may be of the channel type or
of the membrane type. The leaks are specified as fol-
lows:

4_J 3_ Channel Leak. This shall have a leak

rate such that when helium, at 1 standard atmosphere
pressure, is fed to the leak and thence into the leak

detector under test, a deflection is produced on the
output meter of not less than 100 times the minimum

detectable signal (see
teetor shall have been

4a_ 8maU Membrane

at a rate to produce a deflection as specified under
See. 4_.1. above. Its leak rate shall be specified in
terms of eqmvaLent air leakace rate. The equ/valent
air leakage rate shall be taken as 0.37 times the
helium leakage rate through the membrane under
specified conditions. A temperature correction shall be

specified for the leak, and the correction applied for
the difference between the temperature of the leak
at the time of use and the temperature specified in
the calibration.

_M.3 Large Calibrated Leak. This shah be a viscoua

leak of such leakage rate that, when connected to the
leak detector with ambient air at the inlet side of the

leak, the pressure in the leak detector rises to the op-
timum (high) operating pressure specified by the
manufacturer.

4.4 Helium. This shall be at least 99.9% helium
(available from commercial dealers in cylinder gases).

4.5 Helium Mixture. This shah be a helium and air

mixture of a known concentration such that it pro-
duces a deflection of at least I0 times the minimum

detectable signal (see See. 7_) when fed at a pres-
sure of 760 Torr "'5% and at ambient temperature to
the large calibrated leak (See. 4_ above) and thence

into the leak detector under test. Where applicable,
atmospheric air may be used as the helium mixture; _
in any ease, the mixture air shall be obtained from a

point at least 5 ft outside the walls of the building
housing the test equipment. Helium concentration
ratio shall be expressed as a fraction with numerator
reduced to unity, and this ratio will be represented
by the symbol C. Alternatively, the concentration
ratio may be expresed in parts of helium per million
parts of mi_zre (parts per million by volume). The
concentration ratio of helium in air shall be taken

arbitrarily as 1/200000 or 5 parts per million, and
this figure shall be taken into account when preparing
mixtures containing more helium. [Note: The latest
data indicate 5.24 parts per million of helium in air
by volume, z]

4.6 Leak Detector.

4_.I The leak detector shall have been connected to

a power source conforming in voltage, frequency, and
regulation to the manufacturer's specifications.

4_J_ The leak detector shall have been "warmed up"
as specified by the manufacturer, prior to all test

proeedures. -:-

z E. Glueekauf, "Compendium of Meteorology," T. F. Ma-
lone, ed., (American Meteorological Society, Boston, IMI),
pp. 3-10.

8eo. 5_ below). The leak de-

adjusted as in See. 4.8 below

Leak. This shall leak helium--



,4.6.3 The leak detector under test shall have been

adjusted far tlctecting helium in the manner specified

by ttle manufacturer.

4.7 Chart Recorder. This shall be an instrument of

at least l-h recording time suitable for recording the

output of the leak detector under test and adjustable

so that full scale on the recorder equals full scale of

tim leak-detector output meter W]lCn tile leak detec-

tor is set at its most sensitive detection setting. Tho

time constant nf the recorder shall not be greater than

that of the leak-detector output meter. In the absence

of a suitable recorder, visual observations of the out-

put meter may be used.

4.8 Test Setups. These are illustrated diagrammati-

cally in Figs. 1.0 and 1.1.

5. TEST PROCEDURE--MINIMUM DETECTABLE

SIGNAL _

5.1 Drift Determination

5.1.1 The output of the leak detector is connected

to the recorder, the leak detector being at its maxi-

muln sensitivity settiag and the inlet valve being
closed.

5.1_ The loak detector is adjusted so that the re-

corder reads less than 10% of full scale, the electron-

producing filament being, on.

5.1.3 The output is recorded for 60 rain or until the

output indication has reached full scale.

5.1._, Generally, the recorded-output curve will

show spikes. If spikes do appear, the curve is to bc

faired in standard engineering fashion.

5.1.5 From the faired curve, the output is deter-

mined initially and at the end of each minute, in scale

divisions.

5.1.6 The change in output is calculated for each

l-rain period and tho largest of tbese changes is deter-

mined. This largest change shall be called the driIt

(scale divisions). If the change of output per minute

ST&NOARO SAMPL( INU[T

LEAR LINE

LEAK lVALVE PUMP

T_ ALVE LEAK

Dt[TECTOR

PUMP

FmtrR,, 1.0.

a As used here, minimum detectable signal refers to the per-
formance'of a particular leak detector; it is determined by
_purious outputs of the device that _t a lower limit to the

elium flow rate which rate will produce an unamhiguoua

output signal. _ - ,3
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is always less than ½ of 1% of full scale, the total

change in the 60-rain observation period is deter-

mined. The total change divided by 60 shall be called

the dri]t.

5.2 Noise Determination. The recorded output curve

is examined to determine thc two spikes, one on each

side of the faircd curve, that extcnd furthest from the

curve. The departures are measured (in scale divi-

sions) and the two figures are added. The sum shall

be called the noise. If the output is such that spikes

appear only on one side, the noise shall be taken as

twice the largest departure from the curve (scale di-

visions).

5.3 Minimum Detectable Signal The minimum de-

tectable signal shall be taken to be equal to the sum

of the drift and the noise (scale divisions}. If the sum

is less than the scale divisions corresponding to 2,e,o of

full scale, then the scale divisions corresponding to

2% of full scale shall bc called the minimum detecta-

ble signal.

6. TEST PROCEDURE--MINIMUM DETECTABLE

LEAK

6.1 General. In the procedures below, a calibrated

leak is connected to tile leak detector under test.

Preferably, the connections should contain no rubber

or other polymeric surfaces between the leak and the

leak valve (see Fig. 1.0); if such is tile case, the pro-

cedure under Scc. 6.2 is followed. If rubber or poly-

meric surfaces arc prcscnt, the procedure under See.

6.3 isfollowed.

6.2 SensitivityDetermination I. The leak detector is

prepared as in Sec. 4.8 and cotmected to the recordcr.

6.2.1 The small calibrated leak (scc Scc. 4.3) is con-

nected to the leak detector in a manner specifiedby

the manufacturer. Refer to Fig. 1.0.

Specificd conncctions shall include a valve (prefera-

bly all-metal) that does not act as a source of hclium,
located bctwcen the leak and the leak detector.Thi.-:

valve willbe referred to as the leak valve.

Specified connections shall include a pumping line to

permit evacuation of said connections. The pumpi,lg

lineshall include a valve hereafter referred to a._the

pump valve, which shall be located adjacent to the

pump.
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Specified connections shall contain a minimum of rub-

bet or other polymeric surface(s). Preferably, such
surface(s) shall consist only of the exposed partial
surface(s) of O ring(s).

8.2._ The output is zeroed, with the filament on.

6._ The leak valve is opened.

6_._ The pump valve is opened.

6_ Helium at 760 Torr premure is applied to the
leak. If the leak has its own supply of helium, this
step is omitted.

6.t.6 The atmospheric air present in the connections
between the leak and the leak detector is evacuated to

protect the leak detector.

8.2.7 The pump valve is closed.

6._.8 The inlet valve in the leak detector sample line
is opened promptly after See. 6._.7. [Note: The fila-

ment of the mass spectrometer tube may be turned
off before See. 6_,.7 above.] The pressure in the leak
detector is allowed to reach a steady value, shewing
no observable change in 1 rain.

6.8.9 Turn on filament of mass-spectrometer tube if
it is not on.

6_.10 At this point, it may be necessary to change
the sensitivity settin_ When the output signal has
reached a steady value, showing no observable change
in 1 min, the reading is noted (scale divisions).

8J.ll The stop watch is started and simultaneously
the leak valve is closed aa rapidly am]easible.

6J.1_ The output is observed continuously, and the
stop watch is stopped when the reading has decreased
to 37_ of the reading obtained in Sec. 6-2.10 above.
The reading of the stop watch is noted (T see).
T is a measure of the time required to remove the out-

put signal initially caused by the helium input; this
time figure is referred to as the c/eonup t/m_. It is
assumed, for the purpose of this standard, that the
leak detector is so constituted that the cleanup time
and response time are equal, the respoau t/me being
a measure of the speed of response of the leak detector
to an incoming helium sample. Hereafter, T will be
called theresponsetime.

6J.IS When the output signal has reached a steady
reading, showing no observable change in 1 rain, the
reading is noted.

6.S.I_ The signal due to the calibrated leak shall be
taken as the differeaee between the reading noted in
See. 6.2.10 above and that noted in See. 6-2.13 above.
If the leak detector has been set at reduced sensi-

tivity, the difference shall be converted into equiva-

lent _ale divisions at full-sensitivity setting.

minimum detectable leak shall be calculated by t_
formula below and shall ahool/s be stated together
with the response time, T.

M.Z]N1M_ DR'FJ_F_JUg LIAr, WITH lUWPOlq'am TIMa' _ _._

L,l_rl. R&TIIqG X MINIMUM DIMr_F?_[JI SI_]NAJr_

SlON_b DUB TO C_,IJ/LLTI_ L/L_K

6.3 _msitivity Determinttion II.

8_.1 The leak detector is prepared as in Sec. 4.8 and
connected to the recorder.

(a) A stainless-steel plug is connected to the leak
detector, in place of the calibrated leak shown
in Fib 1.0. Refer to See. 6-2.1.

(b) The output is zeroed, with the filament on.
(c) The leak valve is opened.
(d) The pump valve is opened.
(e) The atmospheric air present in the connec-

tions between the plug and the leak detector
is evacuated to protect the leak detector.

(f) The pump valve is closed.

(g) The inlet valve is opened promptly after See.
6.3.1f above. [Note: The filament of the mass-

spectrometer tube may be turned off before
See. 6.3.1f]. The pressure in the leak detector

is allowed to reach a steady value, showing no
observable change in 1 min.

(h) Turn on filament of mass spectrometer tub,
if it is not on. -"

(i) When the output has reached a steady value,
but in any case not longer than 3 n_in after

See. 6.3.1g above, the output reading is noted.
If the leak detector has been set at reduced

sensitivity, the reading shall be converted to
the equivalent scale divi,ions for full-sensi-
tivity setting.

(j) Close the leak valve.

(k) When the output has reached a steady value,
showing no observable change in 1 rain, the
output reading is noted. As in Sec. 6.3.1i, con-
vert the reading if necessary.

(1) The difference between the readings in Secs.
6_.1i and 6_.1k, abo_e, is calculated and will
be considered a correction figure in See. 6.3.2m
below.

(m) Close the inlet valve.

_.# The plug onl_l is removed from the inlet line.

All connections are to remain in place.
(a) The small calibrated leak is put in place of

the plug removed in Sec. 6_ above, the leak -_
being inserted the same distance into the con- -

nections as the plug had been.

The output is seroed , with the filament on.
The leak valve is opened.

(b)
(_)
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(d) Tile pump valve is opened.
(e) The atmospheric air present in the connections

between the plug :md the leak detector is
evacuated to protect the leak detector.

(f) The pump valve is closed.

(g) The inlet valve is opened promptly after See.
6.3.2f [Note: The filament of tile mass-sl)ee-
trometer tube may be turned off before See.
6.32f above.] The pressure in the leak detec-
tor is allowed to reach a steady value, show-
ing no observable change in 1 min.

(h) Turn on filament of mass-spectrometer tube if
it is not on.

(i) When the output has reached a steady value,

but in any ease not, longer than 1 rain after
step 6.3.2g above, the output reading is noted.
If the leak detector has been set at reduced

sensitivity, the reading shall be converted to
the equivalent scale divisions for full-sensi-

tivity setting.

(j) Close the leak valve.
(k) When the output has reached a steady value,

showing no observable change in 1 rain, tile
output reading is noted. As in See. 6.3.2i, con-
vert tile reading if necessary.

(l) The uncorrected signal due to calibrated leak
shall be taken as the difference between the

reading noted in Sec. 6.3.2i above and that
noted in Sec. 6.3.2k above. If the leak detector

has been set at reduced sensitivity, the differ-
ence shall be converted into equivalent scale
divisions at full-sensitivity setting.

(m) The signal due to the calibrated leak shall be
taken as the difference between the uncor-

rected signal, See. 6.3.21 above, and the cor-
rection in See. 6.3.11 above. The minimum
detectable leak shall be calculated by the
formula below and shall always be stated to-

gether with the response time, T.

MINIMU_,f DIgTgL_ABLI_ LEAK, WITH RF_I_-_SE TIMZ _ -_

SIGNAL DUZ TO CALIBN.4TED LI_4K
CAL/stRATEi) LF_IL R_TINO

MINIMUM DETECTAU_ .qlG.%'AL

7. TEST PROCEDUREmMINIMUM DETECTABLE
CONCENTRATION RATIO

7.1 General. A significant determination of mini-
mum-detectable concentration ratio requires means
within tile leak detector under test for scanning the

helium peak. This refers to the ability to tulle or ad-
just the detector for detecting helium (see See. 2.) and
thereby to attain a maximum or peak output for a
given helium input, and the ability to detune either
side of the peak adjustment until a minimum signal
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is produced. The process of adjusting a leak detector
from one side of tile correct adjustment fol' helium, to

the correct adjustment, and then past the correct ad-

justment, is referred to as seanniTig the (helium) pcctk.
The leak-detector adjustment referred to above is al-
most always an adjustment of the accelerating volt-
age, and it will be assumed that this is the case. When

leak-detector output (scale divisions) is plotted
against accelerating voltage, a curve is ol)tai_md whose
general features are illustrated I)y the solid line in
Fig. 2.0. (Note that voltage may be plotted in the
reverse direction and this will give a reverse slope to
tile curve.) The rise in the curve to a peak at B is duc

to tile presence of helium. The faired curve indicated
by a broken line is due to a varying backgro_,nd sig-
nal contributed by other ions than helium. With
helium present, and in the absence of background, the
curve obtained would be symmetrical, tailing to zero

on either side of the peak voltage. The curve shown in
Fig. 2.0 is very nearly a direct superposition of the
background curve and the symmetrical pure-helium
curve.

It will be noted that, as one varies the voltage from
the left side of the graph to tile right, the output first

decreases, then increases, and finally decreases again.
This reversal in direction, indicati,ag the presence of
helium, is very easily detected when the scan is being
observed visually on a meter. As the helium input
signal becomes smaller, the reversal becomes, smaller.
At some point, a curve such as is shown by the solid
line in Fig. 2.1 is obtained. At this point, the output
never reverses; it "stands still" for a very short in-
terval. Such a condition will just barely be detected
by the usual visual observations. Accordingly, in the

absence of noise,and drift, the concentration ratio of
helium which produces this condition determines the
minimum-detectable concentration ratio.

Under practical conditions, it is not possible to make
a rigidly correct deternfination of the mininmm detec-
table concentration ratio as defined above. In the fol-

lowing, somewhat arbitrary determinations are used
for ealeulating a sensitivity figure. The sensitivity so
obtained is one that is reasonable in light of practical

experience.

, /\
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VOLTA_IE

F:avu 2.1.

7._ Test Procedure--Minimum Detectable Signal s

7_.I Dri]t Determination.

(a) The output of the leak detector is connected

to the recorder, the leak detector being at its

maximum sensitivity setting and the inlet
valve closed. Refer to See. 4.6.

(b) The large calibrated leak (see Sec. 4.3.3) is

connected to the leak detector in a manner

specified by the manufacturer. Refer to Fig.
1.1.

Specified connections shall include a pumping

line to permit evacuation of said connections.

The pumping line shall include a valve,here-

after referred to as the pump valve, which

shall be located ad)aecnt to the pump.

Specified connections shall contain a minimum

of rubber or other polymeric surfaces. Prefera-

bly, such surfaces shall consist only of the

exposed partial surfaces of O rings.

(c) Atmospheric air (see Sec. 4.5) is fed at 760
Torr ---570 to the leak. The feed line shall not

of itself act as a source of helium, and should

preferably be of all-metal construction.

(d) The pump valve is opened.

(e) The atmospheric air present in tile connections
between the leak and the leak detector is
evacuated.

(f) The pump valve is closed.

(g) The valve in the leak detector sample inlet

line is opened. [Nots: The filament of the

mass spectrometer may be turned off before

Sec. 7.2.1f above.] The pressure in the leak

detector i8 alrowed to reach a steady value.

(h) Turn on the filament of the mass spectrometer

if it is not on.

(i) Observe the leak-detector output. If the re-
corder is no scale, dstune until the recorder

reads half-scale. If the recorder is off scale,

slowly tune the leak detector o]] the helium

peak setting until the recorder comes just on
scale. Then detune further until the recorder

reade half-scale.

• As treed here, minimum detectable aignni refers to the per-
formanee of a particular leak detsctor; it is determined by
qmrious outputs of the device that set s lower limit to the
helium.eoneestratioa ratio, which ratio will lxoduee an unam.
biguous output ,_gnsl.

(j) The output is recorded for 30 rain or until the
recorder has reached the end of its scale.

(k) Generally, the recorded output curve will sh,.__

spikes. If spikes do appear, the curve i._ to be

faired in standard engineering fashion.

(I) From the faired curve, the output is deter-

mined initially and at the end of each minute,
in scale divisions.

(m) The change in output is calculated for each

l-rain period and the largestof these changes

is determined. Tltis largest change shall be

calledthe drift(sealodivisions).If the change

of output per minute is always lessthan _ of

I% of fullscale,the totalchange in the 30-rain

observation period is determined. The total

change divided by 30 shall be called the drift.

7J.t Noise Determination. The recorded output

curve is examined to determine the two spikes, one

on each side of the faired curve, which extend furthest

from the curve. The departures are measured (in scalc

divisions) and the two figures arc added. The sum

shall be called the no/as. If the output is such that

down-scale spikes cannot be observed, tlze noise shall

be taken as twice the largest departure from the curve

(scale divisions).

7._ Minimum Detectable Signal. The minimum ctc-

tectable signal shall be taken to be equal to the sum

of the drift and the noise (scale divisions). If the sum

is less than the scale divisions corresponding to 2_ oi

full scale, then the scale divisions corresponding to-

2% of full scale shall be called the minimum detecta-

ble signal.

7.3 Helium Background

7.3.1 With the inlet valve closed, turn on the fila-
ment of the mass-spectrometer tube if it is not al-

ready on.

7.3._ Set the leak detector for the greatestsensitivity

that gives on-scale readings.

7.3.3 When the output signal has reached a steady

reading, showing no observable change in 1 rain, the
helium peak is scanned as specified for the instrument.

Provision is to be made for measuring the accelerating

voltage u the scan i8 performed, and the correspond-
ing outputs are to be observed and recorded.

7.3._, Plot the output against the voitag_ and draw a

smooth curve through the plotted points. The curve is

also faired as shown by the dotted line in Fig. 2.0.
The ordinate AB is taken as a measure of the helium

background, B being located at the maximum of the _:.
curve.

7'.3.5 If AB is different than zero, the scanning is to



be repeated at 16-rain intervals until AB has become
zero or has not changed over a 2-h period.

7.$.6 If AB is ultimately different than zero, its mag-
nitude is determined and is referred to as the helium

background (scale divisions). If the leak detector is at
reduced sensitivity setting, the background shall be
converted to equivalent scale divisions st full-sensi-
tivity setting. Helium background will be abbreviated
HB.

7.4 $_udt/vity Determinatioa

7._.I Directly after See. 7.3, the large calibrated leak
(see See. 4.3.3) is connected to the leak detector in a
manner specit_ed by the manufacturer. Refer to Fig.
1.1.

Specified connections shall include a pumping line to
permit evacuation of said connections. The pumping
line shall include a valve hereafter referred to M the

pump valve, which shall be located adjacent to the

pump.

Specified connections shall contain a minimum of rub-

bet or other polymeric surfaces. Preferably, such sur-
faces shall consist only of the exposed partial surfaces
of 0 rin_.

7._._ The helium mixture (see 4.5) is fed at 760 tort
±5% to the Leak. The feed line shall not of itself set
as a source of helium, and should preferably be of all-
metal construction.

7.4.3 The pump valve is opened.

7.,_.4 The atmospheric air present in the conneetions
between the leak sad the leak detector is evacuated.

7_.5 The pump valve is closed.
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7._,.6 The valve in the leak detector sample inlet

line is opened. [Note: The filament of the mass spec-
trometer may be turned off before See. 7.4.5 above.]
The pressure in the leak detector is allowed to reach

a steady value.

7._.7 Turn on the filament of the mass spectrometer
if it is not on.

7._.8 When the output signal has reached a steady
reading, showing no observable change in I rain, the
helium peak is scanned as specified for the instrument.
Record the scanning voltage and the corresponding
output (scale divisions). If the leak detector is at
reduced sensitivity setting, the output shall be con-
verted to equivalent scale divisions at full-sensitivity
setting.

7._ Plot the output against the voltage and draw a
smooth curve through the plotted points. The curve is

also faired as shown by the dotted line in Fig. 2.0.

7._.I0 Mark on the curves the point B (scan maxi-
mum), point A, point D (scan minimum), and point
C directly below D. Measure the distances of these
point_ from the voltage axis (scale divisions), and de-
note these ordinates, respectively, by b, a, d, and c.

7._.II The minimum-detectable concentration ratio

shall be calculated by the following formula:

MDCR = C,, × (c - a)/(b - a -ItB),

where MDCR is the minimum-detectable concentra-

tion ratio C, is the concentration ratio of helium mix-

ture (see See. 4.5) HB is the helium background (see
See. 7_.6) Or, if c - a is less than the MDS (mini-
mum-detectable signal, see See. 7.2.3), use the formula

MDCR -- C, × (MDS)/(b - a - HB).

_o .
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Foreword

(This foreword is not a part of the proposed
standard.)

This proposed standard was prepared by Evan

F. Wilson of the Allis-Chalmers Manufacturing

Company in his capacity as a member and, pres-

ently, Chairman of Subcommittee ANS-7, Reactor

Components, of the American Nuclear Society
Standards Committee. The work was initiated

early in 1959, and the standard has undergone
some ten or more reviews and revisions. Correc-

tions and additions were incorporated into four
formal revisions of which this is the latest. Rep-

resentatives of 16 companies involved in nuclear

research and development and other companies
involved in the fabrication and construction of

containment vessels participated in the reviews of

this standard. The following are presently mem-
bers ot Subcommittee ANS-7:

E. F. Wilson, Chairman, Allis-Chalmers Manu-

facturing Company

S. F. Bacharach, Aerojet-General, Azusa

E. S. Brown, Phillips Petroleum Company, NRTS

S. Davis, United Nuclear Corporation

K. H. Dufrane, The Martin Company

A. W. Flynn, Ebasco Services, Inc.

L. W. Fromm, Argonne National Laboratory

W. R. Gall, Oak Ridge National Laboratory

R. Hobson, Westinghouse Atomic Power Divi-
sion

K.C. Hoffman, Brookhaven National Laboratory

Arne B. Holt, U. S. Atomic Energy Commission

H. Hopkins, General Atomic

R. L. Koontz, Atomics International

R. C. Lovington, Bechtel Corporation

D. A. Mars, Babcock & Wilcox Company

W.J. McGonnagle, Southwest Research Institute

A. W. Savolainen, Oak Ridge National Labora-

tory

W. R. Smith, General Electric Company, APED

L. E. Steele, Naval Research Laboratory

N. O. Strand, General Electric Company, Han-
ford

T. H. Thomas, Lockheed Nuclear Products

Following review and discussion in the June 15,

1964 meeting of the ANS Standards Committee, a

vote was taken that was in favor of publication of

this draft for comment by ANS members. The

vote was not unanimous; the dissenting members

were of the opinion that Section 8 should be a sep-
arate standard.

This proposed standard is issued for review

and comment by ANS members and other interest-

ed persons. Comments will be accepted until
February 1st and should be addressed to:

O. J. Du Temple

Executive Secretary

American Nuclear Society

244 East Ogden Avenue

Hinsdale, Illinois, 60521

with copies to

Evan F. Wilson

Allis-Chalmers Manufacturing Company

Atomic Energy Division

6939 Arlington Road

P. O. Box 5976

Washington, D. C., 20014

and

Ralph G. Chalker

Atomics International
P. O. Box 309

Canoga Park, California, 91306
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Proposed Standard

for

Leakage Rate Testing of Containment Structures
for Nuclear Reactors

1. Purpose and Scope

1.1 Purpose. The purpose of this standard is to
specify uniform methods for determining the abil-

ity of a reactor container to retain, within the lim-

its of permissible leakage rates, any gases, va-

pors, liquid, or other fluid materials which would
be of a hazardous nature if not contained and

which might be present in the containment struc-

ture as a result of an energy release, rupture, or

leak in the nuclear reactor components or acces-

sories. The need for restriction of leakage from

the containment structure is based on the mainte-

nance of public health and safety, the protection of

operating and maintenance personnel, and the

preservation of property.

1.2 Scope. The provisions of this standard

specify the preferred practices and test require-
ments for the quantitative determination of gas

leakage rates of containment structures for the

housing of operating nuclear reactors. The provi-

sions apply to containment structures for nuclear

power, test, research, and training reactors,
wherever a gas-tight containment structure is

specified as a condition for operation.

2. Conjunctive Standards

2.1 Conditions of Applicability. This standard
shall be applied in conjunction with other stan-

dards and codes as they may apply and are also

specified. Acceptance of a containment structure

with respect to the requirements of this standard

shallbe contingent upon compliance with the spec-

ified codes for design, fabrication,construction,

inspection,proof testing,and maintenance, as sub-

sequently listedin 2.2.

2.2 Conjunctive Standards. Standards or codes
which are conjunctiveto the present standard are

the following:
2.2.1 ASME Boiler and Pressure Vessel

Code, Section 3, Nuclear Vessels.

2.2.2 ASME Boiler and Pressure Vessel

Code, Section 2, Material Specifications.
2.2.3 ASME Boiler and Pressure Vessel

Code, Case Interpretations, 1962 and later revi-
sions.

2.2.4 ASA N 6.2: Proposed Safety Standard

for Design Fabrication and Maintenance of Steel
Containment Structures for Stationary Atomic

Power Reactors.

2.2.5 ASA Standard A57.1: American Insti-

tute of Steel Construction, Specifications for the

Design, Fabrication and Erection of Structural
Steel for Buildings.

2.2.6 ASA Standard A58.1: Building Code

Requirements for Minimum Design Loads in

Buildings and Other Structures.

2.2.7 ASA Standard A89.1: Building Code

Requirements for Reinforced Concrete. (ACI-318)
2.2.8 National Fire Codes, National Fire

Protection Association.

2.2.9 American Petroleum Institute, Rec-

ommended Rules for the Design and Construction

of Large, Welded, Low-Pressure Storage Tanks.

3. Definitions and Descriptions
of Terms

To assure common understanding of the terms

employed inthis specification,the following deft-

nitionsshall apply.

3.1 Containment Structure. A containment

structure, within the nmaning of this standard,

shall be an erected vessel, building, or under-

ground location thatprovides an outer housing for

the reactor system, including the primary vessels,

components, and accessories. The function of the

containment structure shall be the emergency and

secondary retention of fluids and ob]ects in the

event of their accidental release from the reactor

vessels or system.

3.2 Leak. A leak, in the context of this stan-

dard, shallconstitutean opening, however minute,



which allows the passage of a fluid and which is

detectable by the means and methods specified
herein for leak detection or leakage measurement.

3.3 Leakage. Leakage shall be interpreted as

the measureable quantity of fluid escaping from a

leak. For the purposes of this standard, air shall
be used as the reference fluid.

3.4 Leakage Rate. Leakage rate is that leakage

experienced during a specified period of time. For

the purposes of this standard, leakage rate shall

be reported as the percentage by weight of the

original content of air by weight pressurized to

the leakage rate test pressure which could escape

during a 24-hour period. The leakage rate shall be

that experienced at the outside atmosphere and

containment structure air conditions prevailing

during the period of leakage rate testing.

3.5 Maximum Allowable Leakage Rate. The

maximum allowable leakage rate governing the

acceptability of the containment structure by those

responsible for its reliability shall be that stipu-
lated in the specification for the individual con-
tainment structure.

4. Preliminaries to Leakage

Rate Testing.

4.1 Sequence of Tests. Leakage rate testing

should be conducted after the inspection and test-

ing of welded Joints, penetrations, and mechanical

closures; completion of repair measures for the

minimizing of leakage; and corr@letion of contain-

ment structure pressure tests for strength. Where

the containment structure is to be subsequently
covered with concrete or wilt otherwise be inac-

cessible to direct examination, particular care

should be given to inspection of these areas prior
to such coverage. Integral or local leak detection

should preferably precede leakage rate tests.

4.2 Pressure Tests for Strength. Hydrostatic
or pneumatic pressure tests to determine whether

the containment structure complies with specified

strength and design requirements shall precede

leakage rate testing. Also, the results of pressure
tests shall meet the stipulated requirements be-
fore leakage rate tests are initiated.

4.3 Integral Pneumatic Leak Detection

Tests. The detection of individual leak locations,

preliminary to leakage rate testing, may be effec-

ted by local or integral pressurizing of the con-
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tainment structure or both. and the use oa]
solution to provide air-bubble indications O_ex-

terior surfaces. In the initial integral testing fo:
location of leaks, the air pressure should be be-

tween 85% and 100% of the design pressure for th_

containment structure. Repairs or adjustment_
should be made as the leak detection results ind_-

cats. The use of integral pneumatic leak detectior_

methods is particularly adapted to the examinatio_u

of welded joints, gaskets, threaded connections

and mechanical closures, such as air locks, vaive_¢
vacuum breakers, and ducts, where local leak de-

tection methods are not conveniently applicable.

4.4 Local Leak Detection Tests. Locaiizec

pressure tests may be advantageously employed

in some circumstances where the part or area is
especially susceptible to leakage or it is wished to,

employ higher pressures than in the integral-
pressurizing detection test. Local leak detectior:

methods may include the pneumatic soap-bubble

test, vacuum testing, air-ammonia and haioger.
sniffer tests, or other tests developed for special

examinations. Local tests are particularly suit-

able for inspection of equipment prior to installa-

tion in the container and for inspection of mf --

ately small but complex assemblies where _-aks

are difficult to locate and where the leakage rate
is especially slow. Descriptions of local leak de-

tection methods are given in Appendix A. If the
local leak detection test is carried out with inter-

nat pressurizing, a pressure of at least 5 peig
shall be used if the design pressure of the con-

tainment structure is above 10 psig; and at least

one half of the design pressure, if this pressure is
10 psig or less.

4.5 General Preparations for Test Pres-

surizing. Preparatory to test pressurizing for

leakage rate determination, contents of the con-

tainment structure that are sensitive to damage by

a pressure differential, such as some instruments,
should be removed or otherwise protected. Thin

also applies to fan and blower motors employed
for air circulation where the load is a function of

air density. The protection of the structure from

damage, such as by underpressure, should be as-

sured by checking the operative reliability of Vac-
uum breakers. The vacuum release devices should

operate within 10% of their design pressures for
internal or external loading.

4.6 Time Scheduling of the Leakage h
Test. To assure favorable test conditions f'or

leakage rate tests without large or abrupt changes
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in atmospheric temperatures or barometric pres-

sures, the scheduling of the test should be planned

insofar as feasible in accordance with advance

weather predictions. Final weather checks to as-

sure safety of the containment structure should be

made just prior to and during the test. To mini-

mize temperature fluctuationscaused by solar ra-

diation, wind effects, or appreciable changes in

temperature, a relatively windless day during a

period of relativelystable weather conditions is to

be preferred. The anticipatedweather conditions

during the test should indicate littleor moderate

barometric pressure variations in order to im-

prove the reproducibilityof leakage rate results.

5. Leakage Rate Test Methods

5.1 Applicable Test Methods. Leakage rate

test procedures applicableto this standard may be
either the absolute method or the reference vessel

method. The choice of either method shall be a

matter of agreement between parties who axe

charged with responsible acceptance of the vessel

and those in charge of the leakage rate test proce-

dures.

5.2 Description of Methods. The absolute

method of leakage rate testing shallconstitutethe

determination and calculation of air losses by

containment structure leakage over a stated peri-

od of time by the means of direct pressure and

temperature observations during the period of test

with temperature detectors properly located to

provide an average air temperature. The refer-
ence vessel method shall constitute the deter-

mination and calculation of air losses by observa-

tions of the pressure differentials between the

containment structure and a gas-tight reference

system, with the reference vessels located so as

to represent, with reasonable accuracy, the aver-

age temperature of the aggregate containment air.

5.3 Leakage Rate Pressures. Leakage rate

determinations shall be conducted at the pressure

at which the leakage rate was specified and after

all other pressure testing required in the specifi-
cation.

6. Test Equipment and Facilities

6.1 Pressurizing Facilities. Pressurizing

facilities for containment structure leakage rate

tests should be of sufficient capacity to bring the

structure pressure to the test level within a suffi-

to favorable weather conditions. Valves and re-

pressurizing facilitiesshould be available for ad-

justingto subsequent atmospheric changes, as ap-

propriate to specific test requirements.

6.2 Temperature Measurements. All ther-

mometric equipment shall be compared over a

normal range of atmospheric variations with a
reference thermometer of established calibration.

Corrections based on the reference thermometer

shall be available before the leakage rate test is

started. Thermometers, thermocouples, and ther-

mographs employed in the leakage rate tests shall

be reproducibly readable to 0.2°F, or equivalent,

or to the extent specified as the tolerable error

for the maximum allowable leakage rate of the

structure subject to test.

6.3 Pressure Measurements. Mercurial or

aneroid barometers for the observation of contain-

ment structure and outside atmospheres shall be

reproducibly readable to 0.1 mm or less (0.004

in.) or to the extent specified as the tolerable

error for the maximum allowable leakage rate.

Barographs for the recording of the outside at-

mospheric changes need be only of such accuracy

as will indicate gross barometric changes perti-

nent to the scheduling of tests. ALl barometric

equipment shall be compared with a single preci-

sion mercurial barometer equipped with vernier

and shall be correctable for temperature and

readable to 0.1 ram. Manometers for the reading

of pressure differentials shall be of precision
bore and plainly readable to 1 mm (0.04 in.) or

less of water by marked graduations.

6.4 Atmospheric Humidity. Hygrometers or
psychrometers shall be available to determine

relative humidities during the period of test within
and outside the containment structure when re-

quired.

7. Test Procedures

7.1 The Absolute Method. The absolute meth-

od of leakage rate determination depends on the

measurement of the temperature and pressure of
a constant volume of containment structure air

with suitable correction for changes in tempera-

ture and humidity control under a nearly constant

pressure difference wt_ respect to the atmos-

phere outside the structure. R is assumed that the

temperature variations during the test will be in-

sufficient to effect significant changes in the in-

ternai volume of the structure or the partial pres-

cientperiod of time for scheduling with referent./ffsure of water vapor in the contained air.

° ,
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7.2 The Reference Vessel Method. The refer-

ence vessel method of leakage rate determination

depends on the changes in pressure of a constant

volume of contained air compared with that of a

hermetically closed reference vessel which may
be at the same pressure as the contained air at the

start of the test or may have a small differential.

The reference vessels shall be so placed and of

such a geometry that they will assume the tem-

peratures of the contained air within a reasonable

time lag. The reference vessels shall be subject
to leakage rate determination in accordance with

the absolute method prior to their use for con-

tainment structure testing according to the appUc-

able procedures of this standard or may be check-

ed by the halogen sniffer test or by retention of
vacuum.

7.3 Leak Minimization. Before pressurizing

for leakage rate testing, all discernible leaks in

the container shall be revealed by local and inte-

gral leak detection tests and shall be repaired or

corrected. AU openable closures and vacuum

breakers shall be checked for leak tightness.

7.4 Pressurizing. Pressurizing for the leak-

age rate test shall be carried out under atmos-

pheric conditions which provide relatively low air
humidity in order to avoid moisture condensation

within the containment structure. Any moisture

that condenses out of the pressurized air and col-
lects at the bottom of the structure shall be

drained off prior to the start of the test to prevent
re-evaporation. Reference vessels should be sim-

ilarly drained. To provide low humidity and to im-

prove pumping efficiency, cool night air is usually
preferred for pressurization. The structure shall

be pressurized to as near the design pressure as

is possible under prevailing conditions or to pres-

sures stipulated as a condition for test acceptance.

7.5 Temperature Measurements. Area sur-

veys within the structure shall be made in advance

of leakage rate testing to establish any tendencies

to regional variations in temperature. Additional-

ly, thermometers and thermocouples shall be lo-
cated at different parts of the structure wherever

local variations may be expected in the course of

the test. Fans or other means for air circulation

may be used to equalize temperatures in any re L_
gion where representative temperature measure-

ments are. taken and appreciable temperature
variations exist.

.- E
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The temperature pattern revealed by the ,_T,r-
vey shall be employed in connection with the n

representative temperature determination for the

absolute method of leakage rate testing. Location
oi reference vessels shall be made with consider-

ation of the temperature pattern in order to

reflect representative temperatures. Where test-

ing experience with vessels oi various configura-

tions has established appropriate locations for

reference vessels, temperature surveys may be

eliminated /or those vessels having similar pro-
portions.

7.6 Personnel ,Access to Pressurized Con-

tainment Structures. Exposure of personnel

to pressurized air and return to normal atmos-

pheric pressures during the course of containment

structure leakage rate testing shall be governed

by approved decompression procedures involving

a controlled depressurizing rate and waiting peri-

ods at intermediate pressures. For exposures of

no longer than 200 rain at pressures not greater

than 14.3 psig, no intermediate holding periods or

decompression stops are required provided that
the time rate of pressure reduction in the air lock
to atmospheric level is not less than 30 sec. For

exposures to pressurization in excess of 14.3 p; "-

and for exposure periods including repetitive _-

posure within 12 hr, the practices should conform

to those stipulated in Section 1.5, Diving Tables of

the U. S. Navy Diving Manual, NAVSHIP 250-538_

January 1959.

7.7 Period of Test. The leakage rate test

period shall extend to not less than 24 hr of re-

tained internal pressure. Completion of the test

should be scheduled to coincide with atmospheric

temperatures and pressures close to those at the

start of the test, as far as is possible. Check
tests or repetition of tests shall be a matter of

agreement between those responsible for the ac-

ceptance of the containment structure and those in

charge of the leakage rate testing.

7.8 Humidity. The relative humidity of the con-

iainment structure shall be monitored during the
course of the leakage rate test to assure that the
dew point is not reached and that there is no con-

densation of moisture in any part of the structure.
Concrete structures within the containment struc-

ture should be properly cured prior to testing to

minimize high humidity from moisture release;

however, where appreciable evaporation may o_-

cur from exposed surfaces of incompletely cu,
concrete, such surfaces should_ be covered with
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plastic sheeting, or other suitable precautions

should be taken. Open pools of water may be sim-

ilarly covered. To minimize the effect of variation

in the partial pressure of water vapor, it is desir-

able to maintain the containment structure air at a

reasonably constant temperature level, particu-

larly near the completion of the test. Air condi-

tioning, prior to testing, may be employed to

approach this condition. Any moisture condensa-

tion occurring during the course of the test will

result in an apparent leakage rate in excess of

actual.

7.9 Recording of Data. Pressure, tempera-

ture, and humidity observations shall be made

within the containment structure and recorded

during the course of the leakage rate test at hourly

or more frequent intervals. Pressure and tem-

perature measurements of the outside atmosphere

shall also be made and recorded at corresponding

intervals and times. The times of observations

shall be denoted in hours and minutes. A dated log

of events and pertinent observations shall also be

maintained during the test, and the correctness of

data shall be attested to by those responsible for

the test and, where specified, by a competent wit-

ness. Records of the leakage rate tests shall be

maintained in accordance with the terms of agree-

ments with those responsible for the acceptance of

the containment structure.

7.10 Computation of Leakage Rate, The Ab-

solute Method. For the absolute method of leak-

age rate testing, the calculation of the per cent

leakage of air from the containment structure in

terms of the original amount contained and that

which escaped during a 24-hr period shall be

made in accordance with the following formula:

24 ( T, Pa_Per cent leakage in 24hr =-_- 1-_] 100,

where

T_ = mean absolute temperature of the con-
tainment structure air at the start of

the test,

T2 = mean absolute temperature of the con-

tainment structure air at the completion

of the test,

P_ = absolute pressure of the containment

structure air at the start of the test,

P2 = absolute pressure of the containment

structure air at the completion of the

test,

H = time period of the leakage rate test, in

hours. ._'-/7
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The derivation of this formula is given in Appen-

dix B.

7.11 Computation of Leakage Rate, The

Reference Vessel Method. For the reference

vessel method of leakage rate testing, the calcula-

tion of the per cent leakage of air from the con-

tainment structure in terms of the original amount

contained and that which escapes during a 24-hr

period, shall be made in accordance with the fol-

lowing formula:

Per cent leakage in 24 hr =

__ 24 [ rl (P; - P2) (P[ -P01
-- H _ T2PI PI j 100,

where P' and P2' are, respectively, the absolute

pressures of the reference vessel at the start and

completion of the test.

8. Reinspection and Recheck of
the Containment Structure

8.1 Reinspection. Annual reinspection is rec-

ommended to determine whether visual evidence

of deterioration of the structure has occurred and

whether this might affect its tightness with re-

spect to the leakage rate. Such inspection should

include evidence of unequal settlement of the foun-

dations, significant corrosion, significant weath-

ering of sealing compounds or other nonmetallic

materials, cracking at weld areas or other re-

gions of stress concentration, and damage result-

ing from operations or accidents. Penetrations

and closures should be examined and their func-

tional reliability determined.

8.2 Local Leak Detection Retests. Localized

pressure tests, such as those described in 4.4,

should be made whenever annual inspection tests

or other circumstances show deterioration or

otherwise indicate the desirability of such retests.

Localized pressure tests shall be made whenever

repairs or new construction are involved. A

record of lo_cal leak tests results should be main-
tained for reference.

Appendix A.

Local Leak Testing Procedures.

(This material is informative only and is not a

part of the Standard for Leakage Rate Testing of

Containment Structures for Nuclear Reactors.)

AI. Applicability of Local Leak Tests. Lo-

cal leak tests may be selected for the qualitative

°
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inspection of specific materials or components

where methods other than air pressurizing are not

objectionable and provide a more searching and

convenient method. Such tests are particularly
applicable to parts of or accessories to the con-
tainment structure.

A2. Water Submersion Test. The water sub-

mersion test consists of covering an area which

may contain a leak with clean water on the low

pressure side of a differential pressure. The

water should be such as to provide full submerg-

ence with convenient observation of bubble forma-

tion. Repeated bubble formation occurring within

5 min after a previous bubble has been wiped away
will indicatea leak.

A3. Vacuum Test. The vacuum test employs a

vacuum box which can be placed over an area to

be tested and evacuated to at least a 5-psi pres-

sure differentialwith the atmospheric pressure

where the edge seals provide a tightseating clo-

sure. Air leakage through the area tested may be

revealed by changes in a manometer level after

the absence of seating leakage is determined by

soap-suds indicators. Ifa soap solution isapplied

to the test area before covering with the vacuum

box, leaks may be revealed by bubble formation

visible through a glass-covered opening in the box

within a 5-min examination period.

A suitable soap solution for air leak indication

is one consisting of equal parts of corn syrup,

liquiddetergent, and glycerin. The solutionshould

not be prepared more than 24 hr preceding the

test and bubble formation properties should be

checked with a sample leak every halfhour during
the test.

A4. Air-Ammonia Test. The air-ammonia

test is an air-pressurizing method employing an-
hydrous ammonia as an indicator. Where leaks

are present, the leakage permeation of ammonia

is revealed by a white chemical fog on probing the

atmosphere with a swab wetted with 0.1 N hydro-

chloric acid. Sulphur dioxide, such as frown a sul-

phur candle, can also be used as the revealing

reactant. Other methods employing ammonia use

1.0% phenolphthalein in a solutionofequal amounts

ofwater and ethyl alcohol. A cloth dampened with

the phenolphthalein solution and placed over the

test area shows the location of leaks by a pink
discoloration. The ammonia indicator can be in-

troduced as an anhydrous gas or by placing a cloth

saturated with ammonia solution within the pres-

surized space. _-/
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A5. Halogen Sniffer Test. The halogen sn, _

fer test employs a halogen compound leak ind,

tot, such as freon gas, in the pressurized air/_

About 0.3 ounces per cubic foot of air is common-

lyused. Leakage is revealed by traversing the test

area with a detector that senses the effectsofthe

halogen compound on ion emission from a heated

metal surface. Locating the leak is best accom-

plished by holding the snifferat about I/2 in.from

the surface to be examined and traversing this at

a rate of 1/2 in./sec. A leak is indicated by a

milliammeter pointer movement or audible signal.

Detection is also made by flame coloration from

halogen indicator additions to the contained air. It

should be realized that halogen detectors are sen-

sitive to cigarette smoke or vapor from dry

cleaning fluidsin recently cleaned clothing. Also,

ifhalogen compounds are used with stress-corro-

sion sensitive materials, chloride attack ispossi-

ble unless thorough-cleaning follows this test.

Appendix B. Derivation of Formulas

for Containment Structure

Leakage Rates.

(This material is informative only and is not a

part of the Standard for Leakage Rate Testing of

Containment Structures for Nuclear Reactors.)

BI.

PI

P2

Tl

T2

W t =

V =

R =

H
I ? ,r

T ,P ,V

Definition of Symbols.

= absolute pressttre of containment structure

air at the start of the leakage rate test,
= absolute pressure of containment structure

air at the end of the leakage rate test,

= mean absolute temperature at the start of

the leakage rate test, OF + 459.7° or °C +
273 °,

mean absolute temperature at completion
of test,

original weight of contained air at the start
of the test,

final weight of contained air at the end of

the test,

internal volume of containment structure/

assumed to remain constant,

gas constan_ for a perfect gas, applicable

to air for the testconditions employed,

time length of test,in hours,

= reference vessel conditions.

/


